Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 188))

Abstract

Reflection Electron Microscopy (REM) has mainly been used to observe flat, clean and crystalline surfaces with the aim of imaging monatomic steps and surface dislocations. These features can be qualitatively understood and more quantitative theories are currently being developed. Most REM studies have concentrated on semiconductors or noble metals on which it is relatively easy to prepare good crystalline surfaces but it is desirable to extend REM to look at a greater variety of samples. This would include surfaces that are chemically more reative, rougher or less crystalline and less homogeneous, such as those with overlayers or oxides. Most of the previous work has used conventional transmission electron microscopes (CTEMs) but the analytical facilities and generally better vacuum of scanning transmission electron microscopes (STEMs) make them a potentially powerful tool for surface studies. The results presented in this paper were obtained from a V.G.HB501 STEM and show how REM can be used to examine surface reactions and inhomogeneous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Imeson and R. H. Milne, Surface studies in the V.G. HB501 STEM, J.Microscop.Spectrosc.Electron 10:465 (1985).

    Google Scholar 

  2. J. M. Cowley, Image contrast in a transmission scanning electron microscope, Appl.Phys.Letters 15:58 (1969).

    Article  ADS  Google Scholar 

  3. R. H. Milne and D. McMullan, Dynamic focusing for reflection microscopy in STEM, Inst.Phys.Conf.Ser.No 78 (EMAG ‘85):95 (1985).

    Google Scholar 

  4. J. M. Cowley and P. E. Hojlund Nielsen, Magnification variations in reflection electron microscopy using diffracted beams, Ultramicroscopy, 1:145 (1975).

    Article  Google Scholar 

  5. D. Imeson, R. H. Milne, S. D. Berger, and D. McMullan, Secondary electron detection in the scanning transmission electron microscope, Ultramicroscopy, 17:243 (1985).

    Article  Google Scholar 

  6. J. Lambe and S. L. McCarthy, Light emission from inelastic electron tunnelling, Phys.Rev.Letter 37:923 (1976).

    Article  ADS  Google Scholar 

  7. B. Luks and D. L. Mills, Light emission from tunnel junctions: the role of the fast surface polariton, Phys.Rev. B. 22:5723 (1980).

    Article  ADS  Google Scholar 

  8. R. H. Milne, Investigation of stepped copper surfaces RHEED, Surf.Sci. 122:474 (1982a).

    Article  ADS  Google Scholar 

  9. R. H. Milne, A RHEED study of oxygen adsorbed on copper, Surf.Sci. 121:347 (1982b).

    Article  ADS  Google Scholar 

  10. R. H. Milne and A. Howie, Electron microscopy of copper oxidation, Phil.Mag. 49:665 (1984).

    Article  Google Scholar 

  11. J. Perderau and G. E. Rhead, LEED studies of adsorption on vicinal copper surfaces, Surf.Sci. 24:555 (1971).

    Article  ADS  Google Scholar 

  12. T. Homma, T. Yoneoka, and S. Matsunaga, Nucleation and growth behavior of oxide on copper single crystals: their roles in kinetics, Jap.J.Appl.Phys.Suppl.2, Part 2:101 (1974).

    Google Scholar 

  13. T. Hsu and J. M. Cowley, Reflection electron microscopy of fcc metals, Ultramicroscopy 11:239 (1983).

    Article  Google Scholar 

  14. M. E. Mochel, C. J. Humphreys, J. A. Eades, J. M. Mochel and Petford, A. K. Electron beam writing on a 20A scale in metal β-aluminas, Appl.Phys.Lett., 42:392 (1983).

    Article  ADS  Google Scholar 

  15. R. H. Milne and T. W. Fan, Electron beam modifications of InP surfaces, J. Microscopy 147:75 (1987).

    Article  Google Scholar 

  16. J. Olivier, P. Faulconnier and R. Poirier, Low-energy electron losses by plasmon excitations as control means of the growth of epitaxial layers, J.Appl.Phys. 51:4990 (1980).

    Article  ADS  Google Scholar 

  17. A. K. Petford-Long and D. J. Smith, In situ oxidation processes for In III–V compound semiconductors studied by high-resolution electron microscopy. Phil.Mag.A. 54:837 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Milne, R.H. (1988). Reflection Microscopy in a Scanning Transmission Electron Microscope. In: Larsen, P.K., Dobson, P.J. (eds) Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5580-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5580-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5582-3

  • Online ISBN: 978-1-4684-5580-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics