Skip to main content

Production of Erythropoietin by an Established Human Renal Carcinoma Cell Line: In Vitro and In Vivo Studies

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 34))

Abstract

The inverse relationship between tissue oxygenation and circulating erythropoietin levels has been well documented in clinical and in vivo experimental studies1. Although a considerable body of information exists on the correlation between erythropoietin production in vivo and such parameters involved in oxygen supply as hemoglobin concentration, red cell mass, ambient pO2, and hemoglobin-oxygen affinity, little information exists on regulation of erythropoietin synthesis and secretion at the cellular level.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krantz, S.B., and L. Jacobson. 1970. Erythropoietin and the Regulation of Erythropoiesis. Univ. of Chicago P., Chicago.

    Google Scholar 

  2. Burlington, H., E.P. Cronkite, U. Reinecke, and E.D. Zanjani. 1972. Erythropoietin production in cultures of goat renal glomeruli. Proc Natl. Acad. Sci. USA. 69: 3547–3550.

    Article  PubMed  CAS  Google Scholar 

  3. Kurtz, A., W. Jelkmann, F. Sinowatz, and C. Bauer. 1983. Renal-mesangial cell cultures as a model for study of erythropoietin production. Proc. Natl. Acad. Sci. USA. 80: 4008–4011.

    Article  PubMed  CAS  Google Scholar 

  4. Sherwood, J.B., S.H. Robinson, L.R. Bassan, S. Rosen, and A.S. Gordon. 1972. Production of erythrogenin by organ cultures of rat kidney. Blood 40: 189–197.

    PubMed  CAS  Google Scholar 

  5. Sherwood, J.B., and E. Goldwasser. 1976. Erythropoietin production by human renal carcinoma cells in culture. Endocrinology 99: 504–510.

    Article  PubMed  CAS  Google Scholar 

  6. Sherwood, J.B., and D. Shouval. 1986. Continuous production of erythropoietin by an established human renal cell line: Development of the cell line. Proc. Natl. Acad. Sci. USA. 83: 165–169.

    Article  PubMed  CAS  Google Scholar 

  7. Hagiwara, M., I-Li Chen, R. McGonigle, B. Beckman, F.H. Kasten, and J. M. Fisher. 1984. Erythropoietin production in a primary culture of human renal carcinoma cells maintained in nude mice. Blood 63: 828–835.

    PubMed  CAS  Google Scholar 

  8. Sytkowski, A.J., J. P. Richie, and K.A. Bicknell. 1983. New human renal carcinoma cell line established from a patient with erythrocytosis. Cancer Res. 43: 1415–1419.

    PubMed  CAS  Google Scholar 

  9. Ascensao, J.L., F. Gaylis, D. Bronson, E.E. Fraley, and E.D. Zanjani. 1983. Erythropoietin production by a human testicular germ cell line. Blood. 62: 1132–1143.

    PubMed  CAS  Google Scholar 

  10. Choppin, J., C. Lacombe, N. Casadevall, D. Muller, P. Tambourin, and B. Varet. 1984. Characterization of erythropoietin produced by IW32 murine erythroleukemia cells. Blood 64: 341–347.

    PubMed  CAS  Google Scholar 

  11. Shouval, D., B. Rager-Zisman, P. Quan, D.A. Shafritz, B.R. Bloom, and L.M. Reid. 1983. Role in nude mice of interferon and NK cells in inhibiting tumorigenicity of human epatocellular carcinoma cells infected with hepatitis B virus. J. Clin. Invest. 72: 707–717.

    Article  PubMed  CAS  Google Scholar 

  12. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  13. Firminger, H.I. 1975. Atlas of Tumor Pathology. In: Armed Forces Institute of Pathology, Wash. D.C.

    Google Scholar 

  14. Iscove, N.N., F. Sieber, and K.H. Winterhalter. 1974. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J. Cell Physiol. 83: 309–320.

    Article  PubMed  CAS  Google Scholar 

  15. Shouval, D., M. Anton, E. Galun, and J.B. Sherwood. 1988. Erythropoietin induced polycythemia in athymic mice following transplantation of human renal carcinoma cell line. Cancer Research 48: In Press.

    Google Scholar 

  16. Sherwood, J.B., and E. Goldwasser. 1978. Extraction of erythropoietin from normal kidneys. Endocrinology 103: 866–870.

    Article  PubMed  CAS  Google Scholar 

  17. Sherwood, L.M. 1984. Ectopic hormone syndromes. In: Contemporary Endocrinology, Vol. II. S.H. Ingbar, ed., Plenum Press, New York. 345–402.

    Google Scholar 

  18. Sutherland, E.W. 1970. On the biological role of cAMP. JAMA 214: 1281–1288.

    Article  PubMed  Google Scholar 

  19. Brown, E.M., and G.D. Aurbach. 1980. Role of cyclic nucleotides in secretory mechanisms and actions of parathyroid hormone and calcitonin. Vitamins Hormones 38: 206.

    Google Scholar 

  20. Abe, M., and L.M. Sherwood. 1972. Regulation of parathyroid hormone secretion by adenyl cyclase. Biochem. Biophys. Res. Commun. 48: 396–401.

    Article  PubMed  CAS  Google Scholar 

  21. Brown, E.M., S. Hurwitz, and G.D. Aurbach. 1977. Beta-adrenergic stimulation of cyclic AMP content and parathyroid hormone release from isolated bovine parathyroid cells. Endocrinology 100: 1696.

    Article  PubMed  CAS  Google Scholar 

  22. Williams, G.A., G.K. Hargis, E.N. Bowser, W.J. Henderson, and N.J. Martinez. 1973. Evidence for a role of adenosine 3’5’-mono-phosphate in parathyroid hormone release. Endocrinology 92: 687–691.

    Article  PubMed  CAS  Google Scholar 

  23. Kraicer, J., and A.E.H. Chow. 1982. Release of growth hormone from purified somatotrophs: Use of perifusion system to elucidate interrelations among calcium, adenosine 31,51-monophosphate, and somatostatin. Endocrinology 111: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  24. Schofield, J.G. 1967. Role of cyclic 35’-adenosine monophosphate in the release of growth hormone in vitro. Nature 215: 1382–1383.

    Article  PubMed  CAS  Google Scholar 

  25. Tonoue, T., and J. Kitoh. 1978. Release of cyclic AMP from the chicken thyroid stimulated with TSH in vitro. Endocrinol. Jpn. 25: 105–109.

    Article  PubMed  CAS  Google Scholar 

  26. Robison, G.A., R.W. Butcher, and E.W. Sutherland. 1971. Cyclic AMP. In: Academic Press, Orlando, Florida.

    Google Scholar 

  27. Posternak, T., and G. Cehovic. 1971. Derivatives and analogues of cyclic nucleotides. Ann. N.Y. Acad. Sci. 185: 42–49.

    Article  PubMed  CAS  Google Scholar 

  28. Sherwood, J.B., E.R. Burns, and D. Shouval. 1987. Stimulation by cAMP of erythropoietin secretion by an established human renal carcinoma cell line. Blood 69: 1053–1057.

    PubMed  CAS  Google Scholar 

  29. Free, C.A., M. Chasin, V.S. Paik, and S.M. Hess. 1971. Steroidogenic and lipolytic activities of 8-substituted derivatives of cyclic 3’,5’-adenosine monophosphate. Biochem. 10: 3785–3789.

    Article  CAS  Google Scholar 

  30. Sherwood, J.B. 1985. cAMP-stimulated release of erythropoietin by normal and neoplastic renal cells. Blood 66: 161 (Abstr.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Shouval, D., Sherwood, J.B. (1988). Production of Erythropoietin by an Established Human Renal Carcinoma Cell Line: In Vitro and In Vivo Studies. In: Tavassoli, M., Zanjani, E.D., Ascensao, J.L., Abraham, N.G., Levine, A.S. (eds) Molecular Biology of Hemopoiesis. Advances in Experimental Medicine and Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5571-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5571-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5573-1

  • Online ISBN: 978-1-4684-5571-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics