Skip to main content

Serine Proteases Promote Human CFU-GM in Methylcellulose Culture Systems

  • Chapter
Molecular Biology of Hemopoiesis

Abstract

Amino acid sequences and three dimensional structural analysis of serine proteases show sequence homology in a group of compounds, which include thrombin, Cl’ esterase, urokinase, trypsin, plasminogen, snake venom, kallikrein, and the γ subunit of mouse submandibular gland nerve growth factor. Common to the structure of these enzymes are active sites consisting of aspartic acid, histidine and serine. The similarities between the various serine proteases are striking in a number of details, including cellular location, chemical structure, molecular weight and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perris, A.D., and J.F. Whitfield. 1969. The mitogenic action of bradykinin on thymic lymphocytes and its dependence on calcium. Proc Soc. Exp. Biol. Med. 130: 1198–1201.

    PubMed  CAS  Google Scholar 

  2. Rixon, R.H., J.F. Whitfield, and J. Bayliss. 1971. The stimulation of mitotic activity in the thymus and bone marrow of rats by kallikrein. Horm. Metab. Res. 3: 279–284.

    Article  PubMed  CAS  Google Scholar 

  3. Schapira, M., C.F. Scott, L.A. Boxer, and R.W. Colman. 1983. Activation of human polymorphonuclear leukocytes by human plasma kallikrein. Adv. Exp. Med. Biol. 156: 747–753.

    PubMed  Google Scholar 

  4. Mandel, P., J. Rodesch, and J.M. Mantz. 1973. The treatment of experimental radiation lesions by kallikrein. In: Kininogenases 1, ed. by G.L. Haberland and J.W. Rohen, pp. 171–188, Schattauer, Stuttgart, New York.

    Google Scholar 

  5. Kraut, J. 1977. Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46: 331–358.

    Article  PubMed  CAS  Google Scholar 

  6. Stroud, R.M. 1974. A family of protein-cutting proteins. Sci Am 231: 74–88.

    Article  PubMed  CAS  Google Scholar 

  7. Pisano, J.J. 1975. Chemistry and biology of the kallikrein-kinin system. In: Proteases and Biological Control, ed. Pisano, J.J, pp. 199–222, Cold Spring Harbor Laboratory.

    Google Scholar 

  8. Neurath, H., and K.A. Walsh. 1976. Role of proteolytic enzymes in biological regulation (a review). Proc. Natl. Acad. Sci. USA 73: 3825–3832.

    Article  PubMed  CAS  Google Scholar 

  9. Levi-Montalcini, R., R.H. Angeletti, and P.U. Angelietti. 1972. The nerve growth factor. In: The Structure and Function of Nervous Tissue, ed. by G.H. Bourne, pp. 1–38, Academic Press, New York, London.

    Google Scholar 

  10. Bothwell, M.A., W.H. Wilson, and E.M. Shooter. 1979. The relationship between glandular kallikrein and growth factor-processing proteases of mouse submaxillary gland. J. Biol. Chem. 254: 7287–7294.

    PubMed  CAS  Google Scholar 

  11. Habener, J.F., H.T. Change, and J.T. Potts. 1977. Enzymic processing Schacter, M., B. Maranda, and C. Moriwaki. 1978. Localization of kallikrein in the coagulation and submandibular glands of the guinea-pig. J. Histochem Cytochem 26: 318–321.

    Article  Google Scholar 

  12. Metealf, D. 1981. In: Tissue Growth Factors, ed. by R. Baserga, pp. 343–384, Springer, New York.

    Chapter  Google Scholar 

  13. Nicola, N.A., D. Metealf, M. Matsumoto, and G.R. Hohnson. 1983. Purification of a factor inducing differentiation in murine myelo- monocytic leukemia cells. Identification as granulocyte colony — stimulating factors. J. Biol. Chem. 258: 9017–9021.

    PubMed  CAS  Google Scholar 

  14. Stanley, E.R., and P.M. Heard. 1977. Factors regulating macrophage production and growth. Purification and some properties of colony stimulating factors from medium conditioned by mouse L Cells. J. Biol. Chem. 252: 4305–4312.

    PubMed  CAS  Google Scholar 

  15. Burgess, A.W., J. Camakaris, and D. Metcalf. 1977. Purification and properties of colony stimulating factors from mouse lung- conditioned medium. J. Biol. Chem. 252: 1998–2003.

    PubMed  CAS  Google Scholar 

  16. Wokota, T., F. Lee, D. Rennich, et al. 1984. Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth factor activity in monkey cells. Proc. Natl. Acad. Sci. USA. 81: 1070–1074.

    Article  Google Scholar 

  17. Fung, M.C., A.J. Hapel, S. Ymer, et al. 1984. Molecular cloning of CDNA for murine interleukin-3. Nature 307: 233–237.

    Article  PubMed  CAS  Google Scholar 

  18. Iscove, N.N., C.A. Roitsch, N. Williams, and L.J. Guilbert. 1982. Molecules stimulating early red cell, granulocyte, macrophage and megakaryocyte precursors in culture: Similarity in size, hydrophobicity, and charge. J. Cell Physiol. Suppl 1: 65–78.

    Article  PubMed  CAS  Google Scholar 

  19. Bazill, C.W., M. Haynes, J. Garland, and T.M. Dexter. 1983. Qhar- acterization and partial purification of a hematopoietic growth factor in WEHI-3 cell conditioned medium. J. Biochem. 210: 747–759.

    CAS  Google Scholar 

  20. Wong, G.G., J.S. Witek, P.A. Temple, et al. 1985. Molecular cloning of the complimentary DNA and purification of the natural and recombinant proteins. Science 228: 810–815.

    Article  PubMed  CAS  Google Scholar 

  21. Gough, N.M., J. Gough, D. Metcalf, et al. 1984. Molecular cloning of cDNA encoding a murine hematopoietic growth regulator, granulocyte-macrophage colony stimulating factor. Nature 303: 763–767.

    Article  Google Scholar 

  22. Kawasaki, E.S., M.B. Ladner, A.M. Wang, et al. 1985. Molecular cloning of a complimentary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230: 291–296.

    Article  PubMed  CAS  Google Scholar 

  23. Iscove, N.N., J.S. Senn, J.E. Till, and E.A. McCulloch. 1971. Colony formation by normal and leukemic marrow cells in culture: Effects of conditioned medium from normal leukocytes. Blood 37: 1–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Gross, S., Worthington-White, D.A., Smith, C.M. (1988). Serine Proteases Promote Human CFU-GM in Methylcellulose Culture Systems. In: Tavassoli, M., Zanjani, E.D., Ascensao, J.L., Abraham, N.G., Levine, A.S. (eds) Molecular Biology of Hemopoiesis. Advances in Experimental Medicine and Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5571-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5571-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5573-1

  • Online ISBN: 978-1-4684-5571-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics