Role of Immunocompetent Cells in the Regulation of Human Megakaryocytopoiesis In Vitro

  • Robert A. Detrick
  • Jeanne C. Schulman
  • Steve W. Mamus
  • Roger P. McEver
  • Esmail D. Zanjani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 34)


T cells and monocytes/macrophages (Mo) have been shown to play important roles in modulating the growth and differentiation of human erythroid and myeloid progenitors and have been implicated in the mechanisms of gamma interferon (γ-IFN) mediated suppression of normal human marrow erythroid progenitors in vitro. In order to assess the importance of T cells and Mo in the growth of human megakaryocytic progenitors (CFU-Mk) in vitro and to investigate γ-IFN effect on human megakaryocytopoiesis, normal human marrow (BM) was cultured in plasma clot in the presence and absence T cells, Mo and γ-IFN under conditions that support the formation of CFU-Mk derived colonies. The removal of T cells from BM (BM-T) caused a significant decrease (71.3 ±3.2 colonies observed vs 231.2 ± 38.5 colonies predicted) in both the number and size of CFU-Mk derived colonies, and no such changes were seen with Mo depletion (BM-Mo); co-culture of autologous T cells with BM depleted of both Mo and T cells (BM-Mo-T) caused a significant increase in CFU-Mk derived colonies and restored colony size. The addition of γ-IFN (<50–10,000 IU/ml) to BM caused a dose dependent inhibition of CFU-Mk (0–90%) as evidenced by decreased colony numbers and reduced colony size. The addition of γ-IFN (50–10,000 IU/ml) to BM-T caused reduced inhibition of CFU-Mk (0–60%); co-culture of T cells (but not Mo) pre-incubated with γ-IFN (10,000 IU/ml; 1 hour, 37 C followed by washing X 3) resulted in supression of CFU-Mk (80% inhibition with the addition of 1:4 T cells:marrow cells).

The results demonstrate that T cells have the ability to modulate the growth of human CFU-Mk in vitro and may, under appropriate conditions, either promote (normal T cells) or inhibit (γ-IFN activated T Cells) human megakaryocytopoiesis.


Colony Formation Colony Size Normal Human Bone Marrow Human Megakaryocyte Total Mononuclear Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipton, J. and D. Nathan. 1985. Interaction between lymphocytes and macrophages in hematopoiesis. In Hematopoietic Stem Cells. D. Golde and F. Takaku, editors. Marcel Dekker, New York. 145–202.Google Scholar
  2. 2.
    Cline, M. and D. Golde. 1979. Cellular interactions in haematopoiesis. Nature. 277: 177–181.PubMedCrossRefGoogle Scholar
  3. 3.
    Zuckerman, K. 1981. Human erythroid burst forming units. Growth in vitro is dependent upon monocyte but not T-lymphocytes. J. Clin. Invest. 67: 702–710.PubMedCrossRefGoogle Scholar
  4. 4.
    Nathan, D., L. Chess, D. Hillman, B. Clarke, J. Breard, E. Merler, D. Housman. 1978. Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro. J. Exp. Med. 147: 324–339.PubMedCrossRefGoogle Scholar
  5. 5.
    Ascensao, J., N. Kay, M. Banisadre, and E. Zanjani. 1981. Cell-Cell interaction in human granulopoiesis: role of T lymphocytes. Exp. Hematology 9: 473–478.Google Scholar
  6. 6.
    Bagby, G. and J. Gabourel. 1979. Neutropenia in three patients with rheumatic disorders. Supression of granulopoiesis by cortisol-sensitive thymus-dependent lymphocytes. J. Clin. Invest. 64: 73–82.CrossRefGoogle Scholar
  7. 7.
    Zoubos, N., P. Gascon, J. Djeu, S. Trost, and N. Young. 1985. Circulating activated suppressor T-lymphocytes in aplastic anemia. N. Engl. J. Med. 312: 257–262.CrossRefGoogle Scholar
  8. 8.
    Zanjani, E., P. McGlave, S. Davies, M. Banisadre, M. Kaplan, and G. Sarosi. 1982. In vitro supression of erythropoiesis by bone marrow adherent cells from some patients with fungal infection. Brit. J. Hematol. 50: 479–490.CrossRefGoogle Scholar
  9. 9.
    Aye, M. 1977. Erythroid colony formation in cultures of human marrow: effect of leukocyte conditioned mediu. J. Cell. Physiol. 91: 69–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Metcalf, D. 1986. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67: 257–267.PubMedGoogle Scholar
  11. 11.
    Piacibello, W., L. Lu, B. Rubin, and H. Broxmeyer. 1984. Human gamma interferon enhances the release of granulocyte-macrophage colony stimulating factors (GM-CSF) from a sorted population of 0KT4+ lymphocytes stimulated by phytohemagglutinin (PHA). Blood 64 (Suppl): 455.Google Scholar
  12. 12.
    Herrmann, F. and J. Griffin. 1986. T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro. J. Immunol. 136: 2856–2861.PubMedGoogle Scholar
  13. 13.
    Revel, M. 1984. The interferon system in man: nature of the interferon molecules and mode of action. In Antiviral Drugs and Interferon. Becker Y., editor. Marinus Nijhoff Publishing, Boston. 357–433.CrossRefGoogle Scholar
  14. 14.
    Mamus, S., S. Beck-Schroeder, and E. Zanjani. 1985. Supression of normal human erythropoiesis by gamma interferon in vitro: role of monocytes and T lymphocytes. J. Clin. Invest. 75: 1496–1503.PubMedCrossRefGoogle Scholar
  15. 15.
    Broxmeyer, H., L. Lu, E. Platzer, C. Feit, L. Juliano, and R. Rubin. 1983. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. J. Immunol. 131: 1300–1305.PubMedGoogle Scholar
  16. 16.
    Lu, L., K. Welte, J. Gabrilove, G. Hangoc, E. Bruno, R. Hoffman, and H. Broxmeyer. 1986. Effects of recombinant human tumor necrosis factor alpha, recombinant human gamma-interferon, and prostaglandin E on colony formation of human hematopoietic progenitor cells stimulated by natural human pluripotent colony — stimulating factor, pluripoietin alpha, and recombinant erythropoietin in serum-free cultures. Cancer Research 46: 4357–4361.PubMedGoogle Scholar
  17. 17.
    Quesada, J. et al. 1986. Clinical toxicity of interferons in cancer patients: a review. J. Clin. Oncol. 4: 234–243.PubMedGoogle Scholar
  18. 18.
    Zoumbos, N., P. Gascon, J. Djeu, and N. Young. 1985. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc. Natl. Acad. Sci. USA 82: 188–192.PubMedCrossRefGoogle Scholar
  19. 19.
    Mamus, S., M. Oken, and E. Zanjani. 1986. Suppression of normal human erythropoiesis by human recombinant DNA-produced alpha-2- interferon in vitro. Exp. Hematol. 14: 1015–1022.PubMedGoogle Scholar
  20. 20.
    Kanz, L., G. Lohr, A. Fauser. 1983. Modulation of human megakaryocytic colony formation. In Normal and Neoplastic Hematopoiesis. D. Golde and P. Marks, editors. Alan R. Liss, Inc., New York 359–368.Google Scholar
  21. 21.
    Gewirtz, A., K. Mangan, and Y. Wen. 1986. Cellular regulation of in vitro human megakaryocytopoiesis. Clin. Res. 34: 458A.Google Scholar
  22. 22.
    Geissler, D., L.Lu, E. Bruno, H. Yank, H. Broxmeyer, and R. Hoffman. 1985. The influence of T-lymphocyte subsets and humoral factors on colony formation by human bone marrow and blood megakaryocyte progenitor cells in vitro. Blood 66. (Suppl): 452.Google Scholar
  23. 23.
    Geissler, D., G. Konwalinka, and C. Peschel, et al. 1985. A regula tory role of activated T-lymphocytes on human megakaryocytopoiesis in vitro. Br. J. Haemal. 60: 233–238.CrossRefGoogle Scholar
  24. 24.
    Nagasawa, T., T. Sakurai, H. Kashiwagi, and T. Abe. 1986. Cell-mediated amegakaryocytic thrombocytopenia associated with systemic lupus erythematosis. Blood 67: 479–483.PubMedGoogle Scholar
  25. 25.
    Gewirtz, A., M. Sacchetti, R. Bien, and W. Barry. 1986. Cell-mediated suppression of megakaryocytopoiesis in acquired amegakaryocytic thrombocytopenic purpura. Blood 68: 619–626.PubMedGoogle Scholar
  26. 26.
    Mazur, E., R. Hoffman, J. Chasis, S. Marchesi, and E. Bruno. 1981. Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood. 57: 277–286.PubMedGoogle Scholar
  27. 27.
    McEver, R., E. Bennett, and M. Martin. 1983. Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein Ilb-IIIa using monoclonal antibodies. J. Biol. Chem. 258: 5269–5275.PubMedGoogle Scholar
  28. 28.
    Neumann, H. and A. Fauser. 1982. Effect of interferon on pluri-potential hemopoietic progenitors (CFU-GEMM) derived from human bone marrow. Exp. Hematol. 10: 587–590.PubMedGoogle Scholar
  29. 29.
    Herrmann, F., R. Schmidt, J. Ritz, and J. Griffin. 1987. In vitro refulation of human hematopoiesis by natural killer cells: analysis at a clonal level. Blood 69: 246–254.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robert A. Detrick
    • 1
  • Jeanne C. Schulman
    • 1
  • Steve W. Mamus
    • 1
  • Roger P. McEver
    • 1
  • Esmail D. Zanjani
    • 1
  1. 1.Department of Medicine Division of Hematology Veterans Administration Medical CenterUniversity of Minnesota School of MedicineMinneapolisUSA

Personalised recommendations