Advertisement

Regulation of Fetal Globin Gene Expression in Human Erythroleukemia (K562) Cells

  • Maryann Donovan-Peluso
  • David O’Neill
  • Santina Acuto
  • Arthur Bank
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 34)

Abstract

We have analyzed the transcription and induction of fusion globin genes comprised of portions of either gamma and beta globin sequences or gamma and neomycin resistance gene sequences. The analysis of gamma promoter beta and gamma-neo fusion genes indicates that 5’ gamma flanking sequences are sufficient for tissue specific expression but not induction in K562 cells. A beta gene containing only the substitution of gamma IVS 2 for beta IVS 2 is expressed and induced when transcripts are analyzed with a 3’ probe in contrast to the lack of expression seen with an intact beta gene. Thus, fusion globin genes containing gamma IVS 2 are both expressed and induced indicating that this region may be involved in the response to hemin stimulation, however, the mechanism is unclear. A gamma-neo fusion gene containing the gamma 51 region is expressed but not induced. When an EcoRI-Bg1 II fragment containing the beta 3’ enhancer is ligated downstream of the gamma-neo gene this gene is now inducible. Multiple genetic elements are involved in the regulated expression of gamma genes in fetal erythroid cells. These experiments begin to localize these sequences to specific regions within the gamma globin gene.

Keywords

Fusion Gene K562 Cell Globin Gene Gamma Gene Beta Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lozzio, C.B., and B.B. Lozzio. 1975. Human chronic myelogenous leukemia cell line with positive philadelphia chromosome. Blood 45: 321–324.PubMedGoogle Scholar
  2. 2.
    Rutherford, T., J.B. Clegg, D.R. Higgs, R.W. Jones, J. Thompson, and D.J. Witherall. 1981. Embryonic erythroid differentiation in the human leukemic cell line K562. Proc. Natl. Acad. Sci. 78 (1): 348–352.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller, C., K. Young, D. Dumenil, B.P. Alter, J.M. Schofield, and A. Bank. 1984. Specific globin mRNAs in human erythroleukemia (K562) cells. Blood 63 (1): 195–200.PubMedGoogle Scholar
  4. 4.
    Young, K., M. Donovan-Peluso, K. Bloom, M. Allan, J. Paul, and A. Bank. 1984. Stable transfer and expression of exogenous human globin genes in human erythroleukemia (K562) cells. Proc. Natl. Acad. Sci. 81: 5315–5319.PubMedCrossRefGoogle Scholar
  5. 5.
    Young, K., M. Donovan-Peluso, R. Cubbon, and A. Bank. 1985. Trans-acting regulation of beta globin gene expression in erythroleukemi (K562) cells. Nucl. Acids Res. 13 (14): 5203–5213.PubMedCrossRefGoogle Scholar
  6. 6.
    Donovan-Peluso, M., S. Acuto, M. Swanson, C. Dobkin, and A. Bank. 1984. Erythroleukemia (K562) cells contain a functional beta globin gene. Mol. and Cell Biol. 4 (11): 2553–2555.Google Scholar
  7. 7.
    Fordis, C.M., N.P. Anagnou, A. Dean, A.W. Nienhuis, and A.N. Schechter. 1984. A beta globin gene inactive in the K562 leukemic cell, functions normally in a heterologous expression system. Proc. Natl. Acad. Sci. 81: 4485–4489.PubMedCrossRefGoogle Scholar
  8. 8.
    Southern, P.J., and P. Berg. 1982. Transformation of cells to antibiotic resistance with a bacterial gene under control of the SV40 promoter. J. Mol. Appl. Genet. 1, 327–341.PubMedGoogle Scholar
  9. 9.
    Kioussis, D., F. Wilson, K. Khazie, and F. Grosveld. 1985. Differential expression of human globin genes introduced into K562 cells. EMBO J. 4: 927–931.PubMedGoogle Scholar
  10. 10.
    Hesse, J.M., J.M. Nickol, M.R. Lieber, and G. Felsenfeld. 1986. Regulated gene expression in transfected primary chicken erythrocytes. Proc. Natl. Acad. Sci. 83: 4312–4316.PubMedCrossRefGoogle Scholar
  11. 11.
    Trudel, M., L. Bruckner, and F. Costantini. 1987. A 3’ enhancer con tributes to stage specific expression of human beta globin genes. Genes and Dev. 1: 954–961.PubMedCrossRefGoogle Scholar
  12. 12.
    Khazaie, K., F. Gounari, M. Antoniou, E. de Boer, and F. Grosveld. 1986. ß-globin gene promoter generates 5’ truncated transcripts in the embryonic/fetal erythroid environment. Nucl. Acids Res. 14: 7199–7212.PubMedCrossRefGoogle Scholar
  13. 13.
    Donovan-Peluso, M., S. Acuto, M. Swanson, C. Dobkin, and A. Bank. 1987. Expression of human gamma globin genes in human erythroleukemia (K562) cells. J. Biol. Chem. in press.Google Scholar
  14. 14.
    Acuto, S., M. Donovan-Peluso, N. Giambona, and A. Bank. 1987. The role of human globin gene promoters in the expression of hybrid genes in erythroid and non-erythroid cells.Google Scholar
  15. 15.
    Bodine, D.M., and T.J. Ley. 1987. An enhancer element lies 3’ to the human A-gamma globin gene. The EMBO J. 6(10): 2997–3004Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Maryann Donovan-Peluso
    • 1
    • 2
  • David O’Neill
    • 1
    • 2
  • Santina Acuto
    • 1
    • 2
  • Arthur Bank
    • 1
    • 2
  1. 1.Department of Genetics and Development College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of Medicine College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations