Skip to main content

Expression of Heme Oxygenase in Hemopoiesis

  • Chapter
Molecular Biology of Hemopoiesis

Abstract

Heme oxygenase has been purified to electrophoretic homogeneity from detergent solubilized adult human liver microsomes. Treatment of microsomes with Triton X-100, sodium cholate and subsequent batchwise DEAE-cellulose, 2′, 5′ ADP-sepharose 4B, Sepharose CLB and hydroxylapatite column resulted in 177% yield of the purified heme oxygenase. The reconsituted system of heme oxygenase, composed of heme oxygenase, NADPH cytochrome c (P450) reductase and biliverdin reductase was equiactive with 1 mM NADPH and 4 nM NADH and showed complete dependence on added heme for catalytic activity. The Km values for NADPH and NADH were.046 and.526 mM, respectively. While NADPH concentration was held constant, the Km value for heme was 1.01 μM with a specific activity of 583 unit/mg protein. The activity of the reconstituted heme oxygenase system was not affected by preincubation with heavy metals despite their inhibitory effect of NADPH cytochrome c (P450) reductase and biliverdin reductase. However, the metalloporphyrins of these heavy metals were found to be strong inhibitors of the reconsituted system with Ki values of 0.015, 0.6, 2.3 and 5 μM for Sn-, Co-, Zn- and Mg- protoporphyrins, respectively. Similarly, the sulfhydryl inactivating reagents, HgCl2, iodoacetamide and p-chloromercurylbenzoate, inhibited the reconstituted heme oxygenase activity.

Rabbits were immunized with purified human liver heme oxygenase and the resulting antibody preparation was used to examine the species specificity of the enzyme. Microsomal protein with a molecular weight of 32,000 from rat and human liver as well as HepG2 cells were identified on dot and Western blots by their reaction with the anti-heme oxygenase similar to the purified enzyme protein. Anti-heme oxygenase precipitated quantitatively, the entire heme oxygenase of rat liver microsomes obtained from animals maintained on standard diet. The human bone marrow microsomal heme oxygenase activity was also quantitatively precipitated by this antibody. Antibody inhibition of rat and human heme xoygenase demonstrated a degree of conservation of both enzyme proteins between the species. As judged by Western blotting, the anti-heme oxygenase recognized only a single protein in spleen, liver, kidney, brain, heart, bone marrow, intei tine and corneal epithelium.

The human heme oxygenase cDNA was isolated by screening a cDNA library in the Okayama-Berg vector with a rat liver cDNA and was subjected to nucleotide sequence analysis. The deduced human heme oxygenase is also composed of 288 amino acids with a molecular mass of 32,800 Da. Following hemin treatment of human leukemic cell line K562 there was an increase in the amount of heme oxygenase protein and mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmid, R. 1977. Trans. Assoc. Amer. Physicians 89: 64–76.

    CAS  Google Scholar 

  2. Yoshinaga, T., S. Sassa, and A. Kappas. 1982. J. Biol. Chem. 257: 7786–7793.

    PubMed  CAS  Google Scholar 

  3. Maines, M.D., N.G. Abraham, and A. Kappas. 1977. J. Biol. Chem. 252: 5900–5903.

    PubMed  CAS  Google Scholar 

  4. Doche»ty, J., B.A. Schacter, G.D. Firneisz, and S.B. Brown. 1984. J. Biol. Chem. 259: 13066–13069.

    Google Scholar 

  5. Yoshinaga, T., S. Sassa, and A. Kappas. 1982. J. Biol. Chem. 258: 7778–7785.

    Google Scholar 

  6. Schacter, B.A., E.B. Nelson, H.S. Marver and B.S.S. Masters. 1972. J. Biol. Chem. 247: 3601–3607.

    PubMed  CAS  Google Scholar 

  7. Yoshida, T., M. Noguchi, G. Kikuchi. 1980. J. Biol. Chem. 255: 4418–4420.

    PubMed  CAS  Google Scholar 

  8. Abraham, N.G., and R.D. Levere. 1980. Life Science 21: 4487–4491.

    Google Scholar 

  9. Pimstone, N.R., P. Engel, R. Tenhunen, P.T. Seitz, H.S. Marver, and R. Schmid. 1971. J. Clin. Inv. 50: 2042–2050.

    Article  CAS  Google Scholar 

  10. Maines, M.D., and A. Kappas. 1977. Science 198: 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  11. Guzelian, P.S. and N.A. Elshourbagy. 1979. Arch. Biochem. Biophys. 196: 178–185.

    Article  PubMed  CAS  Google Scholar 

  12. Abraham, N.G., J.D. Lutton, M.L. Freedman, and R.D. Levere. 1986. Am. J. Med. Sci. 29: 81–86.

    Article  Google Scholar 

  13. Kappas, A. and G.S. Drummond. 1986. J. Clin. Invest. 77: 335–339.

    Article  PubMed  CAS  Google Scholar 

  14. Sardana, M.K., S. Sassa, and A. Kappas. 1980. J. Biol. Chem. 255: 11320–11323,

    Google Scholar 

  15. Sardana, M.K., S. Sassa, and A. Kappas. 1985. Biochem. Pharmacol. 34: 2937–2955.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, T.J., G.S. Drummond, I.A. Kourides, and A. Kappas. 1982. Proc. Nat. Acad. Sci. 79: 7537–7541.

    Article  PubMed  CAS  Google Scholar 

  17. Bakken, A.F., M.M. Thaler, and R. Schmid. 1972. J. Clin. Invest. 51: 530–536.

    Article  PubMed  CAS  Google Scholar 

  18. Abraham, N.G., J.D. Lutton, R. Hoffman, and R.D. Levere. 1985. J. Lab. Clin. Med. 105: 593–600.

    Google Scholar 

  19. Schacter, B.A., B. Yoda, and L.G. Israels. 1979. J. Lab. Clin. Med. 93: 838–846.

    PubMed  CAS  Google Scholar 

  20. Porter, P.N., R.H. Meints, and K. Mesner. 1979. Exp. Hematol. 7: 11–16.

    PubMed  CAS  Google Scholar 

  21. Ross, J. and D. Sautner. 1976. Cell 8: 513–520.

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman, R., M.J. Murnane, D. Burger, et al. 1981. In: Stamatogannopoulas G., Nienhuis, A.W., Eds., Hemoglobins in development and differentiation. Alan R. Liss, New York, pp. 487–506.

    Google Scholar 

  23. Sassa, S. 1980. In vivo and in vitro erythropoiesis: The friend system, G.B. Rossi, Ed., Elsevier/North Holland, Amsterdam, pp. 219–228.

    Google Scholar 

  24. Bern, N., K. Sahr, and E. Goldwasser. 1983. J. Cell Biochem. 21: 93–99.

    Article  Google Scholar 

  25. Abraham, N.G., J.H. Lin, M.W. Dunn, and M.L. Schwartzman. 1987. Invest. Ophthalmol. Vis. Sci.

    Google Scholar 

  26. Towbin, H., T. Strachlin, and J. Gordon. 1979. Proc. Natl. Acad. Sci. 76: 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  27. Schwartzman, M.L., P. Pagano, J.C. McGiff, and N.G. Abraham. 1986. Arch. Biochem. Biophys. 252: 635–645.

    Article  Google Scholar 

  28. Yashukochi, Y., and B.S.S. Masters. 1976. J. Biol. Chem. 251: 5337–5344.

    Google Scholar 

  29. Kutty, R.K. and M.D. Maines. 1981. J. Biol. Chem. 256: 3956–3962.

    PubMed  CAS  Google Scholar 

  30. Watt, J. and P. O’Carra. 1976. Biochem. Soc. Trans. 4: 866–868.

    PubMed  CAS  Google Scholar 

  31. Rutherford, T.R., J.B. Clegg, and D. J. Weatherall. 1979. Nature 208: 164–165.

    Article  Google Scholar 

  32. Knowles, B.B., C.C. Howe, and D.P. Aden. 1980. Science 209: 497–499.

    Article  PubMed  CAS  Google Scholar 

  33. Galbraith, R.A., S. Sassa, and A. Kappas. 1986. Biochem. J. 237: 597–600.

    PubMed  CAS  Google Scholar 

  34. Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald, and W.J. Rutter. 1979. Biochem. 18: 5290–5299.

    Google Scholar 

  35. Shibahara, S., R.M. Muller, H. Taguchi, and T. Yoshida. 1985. Proc. Natl. Acad. Sci. USA. 82: 7865–7869.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida, T., P. Biro, T. Cohen, R.M. Muller, and S. Shibahara. 1988. Eur. J. Biochem., In Press.

    Google Scholar 

  37. Feinberg, A.P. and B. Vogelstein. 1983. Anal. Biochem. 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  38. Aviv, H., and P. Leda. 1972. Proc. Natl. Acad. Sci. USA. 69: 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  39. Okayama, H. and P. Berg. 1982. Mol. Cell. Biol. 2: 161–170.

    PubMed  CAS  Google Scholar 

  40. Maxam, A.M. and W. Gilbert. 1980. Methods Enzymol. 65: 499–560.

    Article  PubMed  CAS  Google Scholar 

  41. Yoshida, T. and G. Kikuchi. 1979. J. Biol.Chem. 254: 4487–4491.

    PubMed  CAS  Google Scholar 

  42. Kozak, M. 1981. Nucleic Acid Res. 9: 5233–5252.

    Article  PubMed  CAS  Google Scholar 

  43. Young, R.A., and R.W. Davis. 1983. Proc.Nat1.Acad.Sci. 80: 1194–1198.

    Article  CAS  Google Scholar 

  44. Young, R.A. and R.W. Davis. 1983. Science 222: 778–782,

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Abraham, N.G., Mitrione, S.M., John, W., Hodgson, B., Levere, R.D., Shibahara, S. (1988). Expression of Heme Oxygenase in Hemopoiesis. In: Tavassoli, M., Zanjani, E.D., Ascensao, J.L., Abraham, N.G., Levine, A.S. (eds) Molecular Biology of Hemopoiesis. Advances in Experimental Medicine and Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5571-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5571-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5573-1

  • Online ISBN: 978-1-4684-5571-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics