Skip to main content

What Chemistry is there in High Temperature Superconductivity? Low Energy Scale Properties of Narrow Band Systems

  • Chapter
Narrow-Band Phenomena—Influence of Electrons with Both Band and Localized Character

Part of the book series: NATO ASI Series ((NSSB,volume 184))

  • 129 Accesses

Abstract

By chemistry above is meant a detailed appreciation of the structural, energetic and bonding characteristics of the individual superconducting material in relation to the full and appropriately graded array of other real materials1. This appreciation must go way beyond the simple e/a counts (along with cubic structure) that were for so long advocated by Matthias as being what counts in superconductivity2. That was largely a consequence of what materials physicists were prepared to take to low temperatures, or rather, what materials it proved possible for physicists and metallurgists to prepare without employing ‘chemical techniques’. Those days are now overtaken by the enthusiastic study of materials like black phosphorus, or PoMo6Se8, or (BEDT-TTF)2I3, or YBa2Cu3O7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Wilson, Adv. in Phys. 21:143 (1972).

    Article  ADS  Google Scholar 

  2. J.A. Wilson, Proceedings of the Conference on ‘Phase Transitions’ Ed.: L.E. Cross, Pergamon Press, p. 101–117 (1972).

    Google Scholar 

  3. J.A. Wilson, NATO ASI, B 113:708 (1984). ‘Electronic Structure of Complex Systems’ Ed.: P. Phariseau and W.M. Temmerman, Plenum, N.Y.

    Google Scholar 

  4. J.A. Wilson, Chapter 9, page 215–260 in ‘The Metallic and Non-Metallic States of Matter’ Ed.: P.P. Edwards and C.N.R. Rao, Taylor and Francis (1985).

    Google Scholar 

  5. J.K. Hulm and B.T. Matthias, NATO ASI Ser. B 68: chapter 1 (1981), ed.: S. Foner and B.B. Schwartz, Plenum.

    Google Scholar 

  6. Y. Takao, H. Asahina and A. Morita, J. Phys. Soc. Jap. 50:3362 (1981).

    Article  ADS  Google Scholar 

  7. M. Sayer and P. Odier, J. Sol. St. Chem. 67:26 (1987).

    Article  ADS  Google Scholar 

  8. N. Nguyen, F. Studer and B. Raveau, J. Phys. Chem. Sol. 44:389 (1983).

    Article  ADS  Google Scholar 

  9. LiTi2O4: K.W. Ng, R.N. Shelton, E.L. Wolf, Phys. Lett. 110A:423 (1985).

    ADS  Google Scholar 

  10. LiV2O4: B.L. Chamberland and T.A. Newston, Sol. St. Comm. 58:693 (1986).

    Article  ADS  Google Scholar 

  11. J.B. Goodenough, Prog. Sol. St. Chem. 5: chapter 4 (1971); J. Sol. St. Chem. 12:148 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Auerbach and P.B. Allen, Phys. Rev. B 29:2884 (1984).

    Article  ADS  Google Scholar 

  13. D. Belitz and W. Schirmacher, J. Phys. C: Sol. St. 16:913 (1983).

    Article  ADS  Google Scholar 

  14. M. Lehmann, C. Nolscher, H. Adrian, J. Bieger, L. Söldner and G. Saemann-Ischenko, p. 107 in Supercond. in ‘d- and f-band Metals’ (4th Conf. of Series), ed.: W. Buckel and W. Weber, Nuclear Centre, Karlsruhe.

    Google Scholar 

  15. K.A. Müller, M. Pomerantz, C.M. Knoedler and D. Abraham, Phys. Rev.Lett. 45:832 (1980).

    Article  ADS  Google Scholar 

  16. U.S. Waki, N. Kasai, S. Ogawa, Sol. St. Comm. 41:835 (1982).

    Article  ADS  Google Scholar 

  17. D. Carre, D. Avignant, R.C. Collins, A. Wold, Inorg. Chem. 18:1370(1979).

    Article  Google Scholar 

  18. G. Shirane, W. Tomlinson and D.E. Moncton, p. 381 in Superconductivity in d- and f-band metals’ (3rd Conf. in Series), ed.: H. Suhl and M.B. Maple, Academic Press, N.Y. (1980).

    Google Scholar 

  19. J.J. Hauser, M. Robbins, F.J. DiSalvo, Phys. Rev. B 8:1038 (1973).

    Article  ADS  Google Scholar 

  20. R. Collins, R. Kaner, P. Russo, A. Wold, D. Avignant, Inorg. Chem. 18: 727 (1979).

    Article  Google Scholar 

  21. L.F. Mattheiss, Phys. Rev. B 8:3719 (1973).

    Article  ADS  Google Scholar 

  22. G.Y. Guo and W.Y. Liang, J. Phys. C: Sol. St. 19:995 (1986).

    Article  ADS  Google Scholar 

  23. G. Thiele, M. Köhler-Degner, K. Wittman, G. Zoubeck, Angewand. Chem. Intl. 17:852 (1978).

    Article  Google Scholar 

  24. V. Riede, H. Newmann, H. Sobotte, F. Lévy, Sol. St. Comm. 38:71 (1981).

    Article  ADS  Google Scholar 

  25. H. Sugiura and T. Yamadaya, Sol. St. Comm. 49:499 (1984).

    Article  ADS  Google Scholar 

  26. J.A. Wilson, J. Phys. F. Metals 15:591 (1985).

    Article  ADS  Google Scholar 

  27. J.A. Wilson, Phil. Trans. Roy. Soc. A314:159–177 (1985).

    ADS  Google Scholar 

  28. R.L. Withers and J.A. Wilson, J. Phys. C: Sol. St. 19:4809–4845 (1986).

    Article  ADS  Google Scholar 

  29. E. Caruthers, L. Kleinman and H.I. Zhang, Phys. Rev. B 7:3753,3760(1973).

    Article  ADS  Google Scholar 

  30. N.J. Doran and A.M. Woolley, J. Phys. C: Sol. St. 14:4257 (1981);

    Article  ADS  Google Scholar 

  31. N.J. Doran and A.M. Woolley, J. Phys. C: Sol. St. 16:L675 (1983).

    Article  ADS  Google Scholar 

  32. J.A. Wilson, J. Phys. F Metals 15:591 (1985).

    Article  ADS  Google Scholar 

  33. D.A. Browne and K. Levin, Phys. Rev. B 28:5049 (1983).

    Article  Google Scholar 

  34. M. Kataoka, J. Phys. C. Sol. St. 19:2939 (1986);

    Article  ADS  Google Scholar 

  35. M. Kataoka, Phys. Rev. B 28:2800 (1983).

    Article  ADS  Google Scholar 

  36. N. Suzuki, A. Yamamoto and K. Motizuki, Sol. St. Comm. 49:1039 (1984).

    Article  ADS  Google Scholar 

  37. E. Sato, K. Ohtake, R. Yamamoto, M. Deyama, T. Mori, K. Soda, S. Suga and K. Endo, Sol. St. Comm. 55:1049 (1985), see also ref. 20.

    Article  ADS  Google Scholar 

  38. M. Ghedira, M. Anne, J. Chenavas, M. Marezio and F. Sayetat, J. Phys. C: Sol. St. 19:6489 (1986).

    Article  ADS  Google Scholar 

  39. C. Maule, J.N. Tothill, P. Strange and J.A. Wilson, J. Phys. C: Sol. St. to be published (1987).

    Google Scholar 

  40. J.P. Pouget, H. Laurois, T.M. Rice, P. Dernier, A. Gossard, G. Villeneuve and P. Hagenmuller, Phys. Rev. B 10:1801 (1974).

    Article  ADS  Google Scholar 

  41. G. Villeneuve, M. Drillon, J.C. Lauray, E. Marquestant and P. Hagenmuller, Sol. St. Comm. 17:657 (1975).

    Article  ADS  Google Scholar 

  42. I.S. Jacobs, J.W. Bray, H.P. Hart, L.V. Interrante, J.S. Kasper, G.D. Watkins, D.E. Prober and J.C. Bonner, Phys. Rev. B 14:3036 (1976).

    Article  ADS  Google Scholar 

  43. M. Pasternak, A.J. Freeman and D.E. Ellis, Phys. Rev. B 19:6555 (1979).

    Article  ADS  Google Scholar 

  44. R. Podloucky, J. Phys. F: Met. 14:L145 (1984).

    Article  ADS  Google Scholar 

  45. K. Seite, L. Birkeland, A. Kjekshus, Acta Chem. Scand. A 32:731 (1978).

    Google Scholar 

  46. R. Vincent and R.L. Withers, to be published.

    Google Scholar 

  47. G.I. Makrovetskii and G.M. Shakhlevich, Phys. Stat. Sol. (a) 61:315 (1980).

    Article  ADS  Google Scholar 

  48. G. Münninghoff, W. Treutman, E. Hellner, G. Heger and D. Reiner, J. Sol. St. Chem. 34:289 (1980).

    Article  ADS  Google Scholar 

  49. M. Lenglat, P. Foulatier, J. Dürr and J. Arsène, Phys. Stat. Sol. (a) 94: 461 (1986).

    Article  ADS  Google Scholar 

  50. H. Tanino and K. Kobayashi, J. Phys. Soc. Jap. 52:3978 (1983).

    Article  ADS  Google Scholar 

  51. G. Thiele, M. Steiert, D. Wagner, H. Wochnes, J. Anorg. Allg. Chem. 516:207 (1984).

    Article  Google Scholar 

  52. P. Day, C. Vettier and G. Parisot, Inorg. Chem. 17:2319 (1978).

    Article  Google Scholar 

  53. J.A. Wilson, Structure and Bonding 32:57–19 (1977).

    Article  Google Scholar 

  54. J.A. Wilson, F.J. DiSalvo and S. Mahajan, Adv. Phys. 24:117 (1975).

    Article  ADS  Google Scholar 

  55. R.L. Withers and J.A. Wilson, J. Phys. C: Sol. St. 19:4809 (1986).

    Article  ADS  Google Scholar 

  56. H. Rietschel and L.J. Sham, Phys. Rev. B 28:5100 (1983).

    Article  ADS  Google Scholar 

  57. P.B. Allen and B. Mitrovic, Sol. St. Phys. 37:2 (1982).

    Google Scholar 

  58. R. Brusetti, J.M.D. Cory, G. Czjzek, J. Fink, F. Gompf and H. Schmidt, J. Phys. F Metals 10:33 (1980).

    Article  ADS  Google Scholar 

  59. P. Hertel and J. Appel, Phys. Rev. B 33:2098 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wilson, J.A. (1988). What Chemistry is there in High Temperature Superconductivity? Low Energy Scale Properties of Narrow Band Systems. In: Fuggle, J.C., Sawatzky, G.A., Allen, J.W. (eds) Narrow-Band Phenomena—Influence of Electrons with Both Band and Localized Character. NATO ASI Series, vol 184. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5559-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5559-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5561-8

  • Online ISBN: 978-1-4684-5559-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics