Skip to main content

Structure and Electronic Properties of Strained Si/Ge Semiconductor Superlattices

  • Chapter
Properties of Impurity States in Superlattice Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 183))

  • 134 Accesses

Abstract

The stability, growth, structural phase transitions, and the electronic properties of strained SiGe alloy and superlattices have been investigated by using self-consistent field pseudopotential method. The equilibrium structures of Sin/Gen (n ≤ 6) superlattices pseudomorphically restricted to the Si(001) surface are determined, and their formation enthalpies are calculated. A simple model for the formation enthalpy of superlattices is developed, whereby the activation barrier of the misfit dislocation is estimated. It is found that during the layer-by-layer growth, the energy of the topmost layer is lowered through the dimerization of atoms. The energy gap of all Sin/Gen superlattices is found to be indirect. More significantly, the energy separation between the direct and indirect gap continues to decrease with increasing n, and is only 0.07 eV for n = 6. Extended conduction band states below the confined states point to a new feature of the band offset and quantum size effect. Localized states lying deep in the valence and conduction band continua are another novel result found in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Kasper, H. J. Herzog, and H. Kimble, App. Phys. 8, 199 (1975).

    Article  ADS  Google Scholar 

  2. J. C. Bean, J. Vac. Sci. Technol. A1, 540 (1983).

    ADS  Google Scholar 

  3. A. T. Fiory, J. C. Bean, L. C. Feldman, and I. K. Robinson, J. App. Phys. 56, 1227 (1984).

    Article  ADS  Google Scholar 

  4. T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts, and A. Ourmazd, Phys. Rev. Lett. 58, 729 (1987).

    Article  ADS  Google Scholar 

  5. S. Ciraci and I. P. Batra, Phys. Rev. Lett. 58, 2114 (1987).

    Article  ADS  Google Scholar 

  6. S. Froyen, D. M. Wood, and A. Zunger, Bull. of Am. Phys. Society 32, 906 (1987).

    Google Scholar 

  7. A. Ourmazd and J. C. Bean, Phys. Rev. Lett. 55, 765 (1985).

    Article  ADS  Google Scholar 

  8. J. L. Martins and A. Zunger, Phys. Rev. Lett. 56, 1400 (1986).

    Article  ADS  Google Scholar 

  9. W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1987);

    Article  ADS  Google Scholar 

  10. ibidB3, 1231 (1985)

    Google Scholar 

  11. J. Tersoff, Phys. Rev. B. 30, 4874 (1984).

    Article  ADS  Google Scholar 

  12. G. Margaritando, A. D. Katnani, N. G. Stoffel, R. R. Daniels, and Te-Xiu Zhao, Solid State Commun. 43, 163 (1982).

    Article  ADS  Google Scholar 

  13. C. H. Van de Walle and R. M. Martin, J. Vac. Sci. Technol. B3, 1256 (1985);

    Google Scholar 

  14. ibid: Phys. Rev.B34 5621 (1986).

    Google Scholar 

  15. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. Herzog, Phys. Rev. Lett. 54, 2441 (1985).

    Article  ADS  Google Scholar 

  16. Su-Huai Wei and A. Zunger, Phys. Rev. Lett. 59, 144 (1987).

    Article  ADS  Google Scholar 

  17. I. Morrison, M. Jaros, and K. B. Wong, Phys. Rev. B35, 9693 (1987).

    ADS  Google Scholar 

  18. S. Ciraci and I. P. Batra, Phys. Rev. B35, 1225 (1987).

    ADS  Google Scholar 

  19. I. P. Batra, S. Ciraci, and J. Nelson, J. Vac. Sci. Technol B5, 1300 (1987).

    Google Scholar 

  20. M. Schluter, J. R. Chelikowsky, S. G. Louie and M. L. Cohen, Phys. Rev. B12, 4200 (1975).

    ADS  Google Scholar 

  21. J. Ihm, A. Zunger and M. L. Cohen, J. Phys. C12, 4409 (1979);

    ADS  Google Scholar 

  22. M. T. Yin and M. L. Cohen, Phys. Rev. Lett. 45, 1004 (1980).

    Article  ADS  Google Scholar 

  23. C. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B26, 419 (1982).

    Google Scholar 

  24. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  25. See for the method and related references: I. P. Batra, S. Ciraci, G. P. Sirivastava, J. S. Nelson, and C. Y. Fong, Phys. Rev. B34, 8246 (1986).

    ADS  Google Scholar 

  26. F. F. Abraham and I. P. Batra, Surf. Sci. 163, L572 (1985).

    Article  Google Scholar 

  27. L. Esaki and R. Tsu, IBM J. Res.Develop. 14, 61 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ciraci, S., Batra, I.P. (1988). Structure and Electronic Properties of Strained Si/Ge Semiconductor Superlattices. In: Fong, C.Y., Batra, I.P., Ciraci, S. (eds) Properties of Impurity States in Superlattice Semiconductors. NATO ASI Series, vol 183. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5553-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5553-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5555-7

  • Online ISBN: 978-1-4684-5553-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics