Skip to main content

Radiation Carcinogenesis

  • Chapter
  • 117 Accesses

Abstract

Ionizing radiation is perhaps the most universally recognized and most intensely studied carcinogen known to man. Certainly no other single environmental carcinogen has attracted as much public attention, elicited such strong emotional responses, or been the subject of more regulatory legislation than radiation. Public awareness of the cancer-inducing property of radiation is relatively recent and is certainly linked to the experience of the survivors of the atomic bomb detonations at Hiroshima and Nagasaki and of persons exposed to fall-out secondary to nuclear weapons testing. Public concern over radiation safety has become even more acute with the proliferation of nuclear arms, the growth of the nuclear power industry and recent accidents at nuclear power plants, such as Chernobyl. However, the oncogenic potential of radiation exposure was recognized early in its history, with the first published report of radiation-induced cancer appearing in the scientific literature shortly after the turn of the twentieth century.1 Indeed, it is believed that Madam Curie and her daughter Irene both succumbed to leukemia attributable to intense radiation exposure associated with their pioneering work with radioactivity. Since these early days in radiation research, the carcinogenic properties of ionizing radiation have been repeatedly substantiated in human populations, experimental animals, and, more recently, tissue-culture systems. More importantly, this accumulating evidence for the cancer-inducing ability of radiation has been accompanied by a growing understanding of potential mechanisms of radiation carcinogenesis, factors influencing the expression of radiation-induced neoplasia, and the risks associated with low-level exposures. It is the intent of this chapter to review the human and experimental experience in the area of radiation carcinogenesis, summarizing cellular and tissue responses, and discussing potential mechanisms involved in the pathogenesis of radiation-induced neoplasms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freiben, A., 1902, Demonstration eines Cancroides des rechten Handrueckens, das sich nach langdauernder Einwirkung von Roentgenstrahlen entwickelt hat, Fortschr. Roentgenstr. 6: 106–111.

    Google Scholar 

  2. Kato, H., and Schult, W. J., 1982, Studies of the mortality of A-bomb survivors. 7. Mortality, 1950–1978. Part I. Cancer mortality, Radiat. Res. 90: 395–432.

    Article  PubMed  CAS  Google Scholar 

  3. National Academy of Sciences, 1980, The Effects on Population of Exposure to Low Levels of Ionizing Radiation: 1980, National Academy Press, Washington, D. C.

    Google Scholar 

  4. Court-Brown, W. M., and Doll, R., 1965, Mortality from cancer and other causes after radiotherapy for ankylosing spondylitis, Br. Med. J. 2: 1327–1332.

    Article  Google Scholar 

  5. Smith, P. G., 1984, Late effects of x-ray treatment in ankylosing spondylitis, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 107–118, Raven, New York.

    Google Scholar 

  6. Shore, R. E., Hempelmann, L. H., Kowaluk, E., Mansur, P. S., Pasternak, B. S., Albert, R. E., and Haughie, G. E., 1977, Breast neoplasms in women treated with x-rays for acute post-partum mastitis, J. Natl. Cancer Inst. 59: 813–822.

    PubMed  CAS  Google Scholar 

  7. Howe, G. R., 1984, Epidemiology of radiogenic breast cancer, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 119–129, Raven, New York.

    Google Scholar 

  8. Shore, R. E., Woodward, E. D., and Hempelmann, L. H., 1984, Radiation-induced thyroid cancer, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 131–138, Raven, New York.

    Google Scholar 

  9. Ron, E., and Modan, B., 1984, Thyroid and other neoplasms following childhood scalp irradiation, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 139–151, Raven, New York.

    Google Scholar 

  10. Mays, C. W., and Spiess, H., 1984, Bone sarcomas in patients given Radium-224, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 241–252, Raven, New York.

    Google Scholar 

  11. Boice, J. R., and Monson, R. R., 1977, Breast cancer in women after repeated fluoroscopic examination of the chest. J. Natl. Cancer Inst. 59: 823–832.

    Google Scholar 

  12. Howe, G. R., Miller, A. B., and Sherman, G. J., 1982, Breast cancer mortality following fluoroscopic irradiation in a cohort of tuberculosis patients, Cancer Detect. Prey. 5: 175–178.

    CAS  Google Scholar 

  13. Mole, R. H., 1978, The radiobiological significance of the studies with 224Ra and thorotrast (surveys in Denmark, Portugal and Germany), Health Phys. 35: 167–174.

    Article  PubMed  CAS  Google Scholar 

  14. van Kaick, G., Muth, H., Kaul, A., Immick, H., Liebermann, D., Lorenz, D., Lorenz, W. J., Luhrs, H., Scheer, K. E., Wagner, G., Wegener, K., and Wesch, H., 1984, Results of the German thorotrast study, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 253–262, Raven, New York.

    Google Scholar 

  15. Rowland, R. E., and Lucas, H. F., 1984, Radium-dial workers, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 231–240, Raven, New York.

    Google Scholar 

  16. Radford, E. P., 1984, Radiogenic cancer in underground miners, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 225–230, Raven, New York.

    Google Scholar 

  17. Land, C. E., 1980, Estimating cancer risks from low doses of ionizing radiation, Science 209: 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  18. Webster, E. W., 1981, On the question of cancer induction by small x-ray doses, AJR 137: 647–666.

    PubMed  CAS  Google Scholar 

  19. Upton, A. C., 1985, Biological basis for assessing carcinogenic risk of low-level radiation, in: Carcinogenesis—A Comprehensive Survey, Vol. 10: The Role of Chemicals and Radiation in the Etiology of Cancer ( E. Huberman and S. H. Barr, eds.), pp. 381–401, Raven, New York.

    Google Scholar 

  20. Upton, A. C., 1984, Biological aspects of radiation carcinogenesis, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 9–19, Raven, New York.

    Google Scholar 

  21. Fry, R. J. M., 1984, Relevance of animal studies to the human experience, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 337–346, Raven, New York.

    Google Scholar 

  22. Clifton, K. H., 1980, Quantitative studies of the radiobiology of hormone responsive normal cell populations, in: Radiation Biology in Cancer Research ( R. E. Meyn and H. R. Withers, eds.), pp. 501–513, Raven, New York.

    Google Scholar 

  23. Furth, J., Haran-Ghera, N., Curtis, H. J., and Buffett, R. F., 1959, Studies on the pathogenesis of neoplasms by ionizing radiation. I. Pituitary tumors, Cancer Res. 19: 550–556.

    PubMed  CAS  Google Scholar 

  24. Miller, R. W., and Beebe, G. W., 1986, Leukemia, lymphoma and multiple myeloma, in: Radiation Carcinogenesis ( A. C. Upton, R. E. Albert, F. J. Burns, and R. E. Shore, eds.), pp. 245–260, Elsevier, New York.

    Google Scholar 

  25. Land, C. E., and Tokunaga, M., 1984, Induction period, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 421–436, Raven, New York.

    Google Scholar 

  26. Ichimaru, M., Ishimaru, T., and Belsky, J. L., 1975, Incidence of leukemia in atomic bomb survivors belonging to a fixed cohort in Hiroshima and Nagasaki, 1950–1971. Radiation dose, years after exposure, age at exposure, and type of leukemia, J. Radiat. Res. 19: 262–282.

    Article  Google Scholar 

  27. Kakunaga, T., 1973, A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from Balb/3T3, Int. J. Cancer 12: 463–472.

    Article  PubMed  CAS  Google Scholar 

  28. Todaro, G. J., and Green, H., 1963, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol. 17: 299–313.

    Article  PubMed  CAS  Google Scholar 

  29. Reznikoff, C. A., Brankow, D. W., and Heidelberger, C., 1973, Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to post-confluence inhibition of division, Cancer Res. 33: 3231–3238.

    PubMed  CAS  Google Scholar 

  30. Hall, E. J., and Hei, T. K., 1986, Oncogenic transformation of cells in culture: Pragmatic comparisons of oncogenicity, cellular and molecular mechanisms, Int. J. Radial. Oncol. Biol. Phys. 12: 1909–1921.

    Article  CAS  Google Scholar 

  31. Borek, C., 1982, Radiation oncogenesis in culture, Adv. Cancer Res. 37: 159–232.

    Article  CAS  Google Scholar 

  32. Terzaghi, M., and Little, J. B., 1976, X-radiation induced transformation in a C3H mouse embryo-derived cell line, Cancer Res. 36: 1367–1374.

    PubMed  CAS  Google Scholar 

  33. Elkind, M. M., Han, A., Hill, C. K., and Buonaguro, F., 1983, Repair mechanisms in radiation-induced cell transformation, in: Radiation Research, Proceedings of the Seventh International Congress of Radiation Research ( J. J. Broerse, G. W. Barendsen, H. B. Kal, and A. J. van der Kogel, eds.), pp. 33–42, Martinus Nijhoff, Amsterdam.

    Google Scholar 

  34. Reznikoff, C. A., Bertram, J. S., Brankow, D. W., and Heidelberger, C., 1973, Quantitative and qualitative studies on chemical transformation of cloned C3H mouse embryo cells sensitive to post-confluence inhibition of cell division, Cancer Res. 33: 3239–3249.

    PubMed  CAS  Google Scholar 

  35. Bertram, J. S., 1985, Neoplastic transformation in cell cultures: In vitro/in vivo correlations, in: Transformation Assay of Established Cell Lines: Mechanisms and Application, IARC Scientific publications No. 67 (T. Kakunaga and H. Yamasaki, eds.), pp. 77–91, International Agency for Research on Cancer, Lyons, France.

    Google Scholar 

  36. Han, A., Hill, C. K., and Elkind, M. M., 1979, Repair of cell killing and neoplastic transformation at reduced dose rates of 6CCo-x-rays, Cancer Res. 40: 123–130.

    Google Scholar 

  37. Upton, A. C., 1961, The dose—response relationship in gamma-radiation-induced cancer, Cancer Res. 21: 717–729.

    PubMed  CAS  Google Scholar 

  38. Kaplan, H. S., 1967, On the natural history of the murine leukemias: Presidential address, Cancer Res. 27: 1325–1340.

    PubMed  CAS  Google Scholar 

  39. Marshall, J. H., and Groer, P. G., 1977, A theory on the induction of bone cancer by alpha radiation, Radial. Res. 71: 149–192.

    Article  CAS  Google Scholar 

  40. Chan, G. L., and Little, J. B., 1986, Neoplastic transformation in vitro, in: Radiation Carcinogenesis ( A. C. Upton, R. E. Albert, F. J. Bums, and R. E. Shore, eds.), pp. 107–136, Elsevier, New York.

    Google Scholar 

  41. Elkind, M. M., Han, A., and Hill, C. K., 1984, Error-free and error-prone repair in radiation-induced neoplastic cell transformation, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 303–318, Raven, New York.

    Google Scholar 

  42. Han, A., Hill, C. K., and Elkind, M. M., 1979, Repair of cell killing and neoplastic transformation at reduced dose rates of 60Co gamma-rays, Cancer Res. 40: 3328–3332.

    Google Scholar 

  43. Hill, C. K., Buonaguro, F. M., Myers, C. P., Han, A., and Elkind, M. M., 1982, Fission-spectrum neutrons at reduced dose rates enhance neoplastic transformation, Nature (Load.) 298: 67–69.

    Article  CAS  Google Scholar 

  44. Hill, C. K., Han, A., and Elkind, M. M., 1984, Fission spectrum at a low dose rate enhance neoplastic transformation in the linear, low dose region (0–10 cGy), Int. J. Radial. Biol. 46: 11–15.

    Article  CAS  Google Scholar 

  45. Hill, C. K., Carnes, B. A., Han, A., and Elkind, M. M., 1985, Neoplastic transformation is enhanced by multiple low doses of fission-spectrum neutrons, Radial. Res. 102: 404–410.

    Article  CAS  Google Scholar 

  46. Hill, C. K., Han, A., Buonaguro, F., and Elkind, M. M., 1984, Multifractionation of 60Co gamma-rays reduces neoplastic transformation in vitro, Carcinogenesis 5: 193–197.

    Article  PubMed  CAS  Google Scholar 

  47. Miller, R. C., Hall, E. J., and Rossi, H. H., 1979, Oncogenic transformation of mammalian cells in vitro with split doses of x-rays, Proc. Natl. Acad. Sci. USA 76: 5755–5758.

    Article  PubMed  CAS  Google Scholar 

  48. Ullrich, R. L., 1983, Tumor induction in Balb/c female mice after fission neutron or gamma irradiation, Radial. Res. 93: 506–515.

    Article  CAS  Google Scholar 

  49. Ullrich, R. L., 1984, Tumor induction in Balb/c mice after fractionated or protracted exposures to fission spectrum neutrons, Radial. Res. 97: 587–597.

    Article  CAS  Google Scholar 

  50. Ullrich, R. L., and Storer, J. B., 1979, Influence of gamma-irradiation on the development of neoplastic disease in mice. III. Dose-rate effects, Radial. Res. 80: 325–342.

    Article  CAS  Google Scholar 

  51. Tokunaga, M., Land, C. E., Yamamoto, T., Asano, M., Tokuoka, S., Ezaki, H., Nishimori, I., and Fukikara, T., 1984, Breast cancer among atomic bomb survivors, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 45–56, Raven, New York.

    Google Scholar 

  52. Finch, S. C., 1984, Leukemia and lymphoma in atomic bomb survivors, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance ( J. D. Boice and J. F. Fraumeni, eds.), pp. 37–44, Raven, New York.

    Google Scholar 

  53. Stewart, A., Webb, J., Giles, D., and Hewitt, D., 1956, Malignant disease in childhood and diagnostic irradiation in utero, Lancet 2: 447.

    Article  Google Scholar 

  54. MacMahon, B., 1962, Prenatal x-ray exposure and childhood cancer, J. Natl. Cancer Inst. 28: 1173–1191.

    PubMed  CAS  Google Scholar 

  55. Jablon, S., and Kato, H., 1970, Childhood cancer in relation to prenatal exposure to atomic bomb radiation, Lancet 2: 1000–1003.

    Article  PubMed  CAS  Google Scholar 

  56. Monson, R. R., and MacMahon, B., Prenatal x-ray exposure and cancer in children, in: Progress in Cancer Research and Therapy, Vol. 26: Radiation Carcinogenesis: Epidemiology and Biological Significance (J. D. Boice and J. F. Fraumeni.), pp. 97–105, Raven, New York.

    Google Scholar 

  57. Furth, J., 1982, Hormones as etiological agents in neoplasia, in: Cancer. A Comprehensive Treatise, Vol. 1, 2nd ed. ( F. F. Becker, ed.), pp. 89–134, Plenum, New York.

    Google Scholar 

  58. Kennedy, A. R., and Weichselbaum, R. R., 1981, Effects of dexamethasone and cortisone with x-ray irradiation on the transformation of C3H 10T1/2 cells, Nature (Lond.) 294: 97–98.

    Article  CAS  Google Scholar 

  59. Borek, C., 1980, X-ray-induced in vitro neoplastic transformation of human diploid cells, Nature (Lond.) 283: 776–778.

    Article  CAS  Google Scholar 

  60. Guernsey, D. L., Ong, A., and Borek, C., 1980, Thyroid hormone modulation of x-ray-induced in vitro neoplastic transformation, Nature (Gond.) 288: 591–592.

    Article  CAS  Google Scholar 

  61. Guernsey, D. L., Borek, C., and Edelman, I. S., 1981, Crucial role of thyroid hormone in x-ray-induced neoplastic transformation in cell culture, Proc. Natl. Acad. Sci. USA 78: 5709–5711.

    Article  Google Scholar 

  62. Kennedy, A. R., Murphy, G., and Little, J. B., 1980, The effect of time and duration of exposure to 12–0tetradecanoylphorbol- 13-acetate (TPA) on x-ray transformation in C3H10TI /2 cells, Cancer Res. 40: 1915–1920.

    PubMed  CAS  Google Scholar 

  63. Kennedy, A. R., and Little, J. B., 1980, An investigation of the mechanism for the enhancement of radiation transformation in vitro by TPA, Carcinogenesis 1: 1039–1047.

    Article  PubMed  CAS  Google Scholar 

  64. Borek, C., Ong, A., Mason, H., Donahue, L., and Biaglow, J. E., 1986, Selenium and Vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms, Proc. Natl. Acad. Sci. USA 83: 1490–1494.

    Article  PubMed  CAS  Google Scholar 

  65. Harisiadis, L., Miller, R. C., Hall, E. J., and Borek, C., 1978, Vitamin A analogue inhibits radiation induced oncogenic transformation, Nature (Lond.) 274: 486–487.

    Article  CAS  Google Scholar 

  66. Merriman, R. L., and Bertram, J. S., 1979, Reversible inhibition by retinoids of 3-methylcholanthreneinduced neoplastic transformation in C3H/10T1/2 clone 8 cells, Cancer Res. 39: 1661–1666.

    PubMed  CAS  Google Scholar 

  67. Kennedy, A. R., 1985, The conditions for the modification of radiation transformation in vitro by a tumor promoter and protease inhibitors, Carcinogenesis 6: 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  68. Little, J. B., 1985, Cellular mechanisms of oncogenic transformation in vitro, in: Transformation Assay of Established Cell Lines: Mechanisms and Application, IARC Scientific publications No. 67, ( T. Kakunaga and H. Yamasaki, eds.), pp. 9–29, International Agency for Research on Cancer, Lyons, France.

    Google Scholar 

  69. Terzaghi, M., and Nettesheim, P., 1979, Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa, Cancer Res. 39: 4003–4010.

    PubMed  CAS  Google Scholar 

  70. Mulcahy, R. T., Gould, M. N., and Clifton, K. H., 1984, Radiogenic initiation of thyroid cancer: A common cellular event, Int. J. Radiat. Biol. 45: 419–426.

    Article  CAS  Google Scholar 

  71. Clifton, K. H., Kamiya, K., Mulcahy, R. T., and Gould, M. N., 1985, Radiogenic neoplasia in the thyroid and mammary clonogens: Progress, problems and possibilities, in: Assessment of Risk from Low Level Exposure to Radiation and Chemicals ( A. D. Woodhead, C. J. Shellabarger, V. Pond, and A. Hollaender, eds.), pp. 329–344, Plenum, New York.

    Google Scholar 

  72. Kennedy, A. R., Cairns, J., and Little, J. B., 1984, Timing of the steps in transformation of C3H10T1/2 cells by x-irradiation, Nature (Lond.) 307: 85–86.

    Article  CAS  Google Scholar 

  73. Kennedy, A. R., and Little, J. B., 1984, Evidence that a second step in x-ray induced oncogenic transformation in vitro occurs during cellular proliferation, Radiat. Res. 99: 228–248.

    Article  PubMed  CAS  Google Scholar 

  74. Barrett, J. C., Tsutsui, T., and Ts’o, P. 0. P., 1978, Neoplastic transformation induced by a direct perturbation of DNA, Nature (Loud.) 274: 229–232.

    Article  CAS  Google Scholar 

  75. Little, J. B., 1977, Radiation carcinogenesis in vitro: Implications for mechanisms, in: Origins of Human Cancer, Vol. IV ( H. Hiatt, J. D. Watson, and J. A. Winston, eds.), pp. 923–939, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  76. LeMotte, P. K., Adelstein, S. J., and Little, J. B., 1982, Malignant transformation induced by incorporated radionuclides in Balb/3T3 mouse embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 7763–7767.

    Article  PubMed  CAS  Google Scholar 

  77. Borek, C., 1985, Oncogenes and cellular controls in radiogenic transformation of rodent and human cells, in: Carcinogenesis A Comprehensive Survey, Vol. 10: The Role of Chemicals and Radiation in the Etiology of Cancer ( E. Huberman and S. H. Barr, eds.), pp. 303–316, Raven, New York.

    Google Scholar 

  78. Kaminsky, S., Mulcahy, R. T., and Zain, S., 1985, Oncogene expression in a radiation induced rat thyroid carcinoma, Proc. Am. Assoc. Cancer Res. 26: 256.

    Google Scholar 

  79. Sarvey, M. J., and Garte, S. J., 1986, Activation of myc and ras oncogenes in radiation-induced rat skin tumors, Proc. Am. Assoc. Cancer Res. 27: 21.

    Google Scholar 

  80. Mizuki, K., Nose, K., Okamoto, H., Tsuchida, N., and Hayashi, K., 1985, Amplification of c-Ki-ras gene and aberrant expression of c-myc in WI-38 cells transformed in vitro by gamma-irradiation, Biochem. Biophys. Res. Commun. 128: 1037–1043.

    Article  PubMed  CAS  Google Scholar 

  81. Guerrero, I., Villasante, L., Diamond, L., Berman, J. W., Newcomb, E. W., Steinberg, J. J., Lake, R., and Pellier, A., 1986, Oncogene activation and surface markers in mouse lymphomas induced by radiation and nitrosomethylurea, Leukemia Res. 10: 851–858.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Mulcahy, R.T. (1989). Radiation Carcinogenesis. In: Sirica, A.E. (eds) The Pathobiology of Neoplasia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5523-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5523-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5525-0

  • Online ISBN: 978-1-4684-5523-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics