Skip to main content

VLSI Implementations of Neural Network Models

  • Chapter
Concurrent Computations

Abstract

Three experimental CMOS VLSI circuits implementing connectionist neural network models are discussed in this paper. These chips contain networks of highly interconnected simple processing elements that execute a task distributed over the whole network. A combination of analog and digital computation allows us to build compact circuits so that large networks can be packed on a single chip. Such networks are well-suited for pattern matching and classification tasks, operations that are hard to solve efficiently on a serial architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Sivilotti, M.R. Emerling, and C.A. Mead, VLSI Architectures for Implementation of Neural Networks Proc. Conf. Neural Networks for Computing, Snowbird, Utah, 1986, J.S. Denker ed., p.408, AIP Proc. 151.

    Google Scholar 

  2. H.P. Graf and P. deVegvar, A CMOS Implementation of a Neural Network Model, in Advanced Research in VLSI, Proc. Stanford Conf. 1987, P.Losleben ed., MIT Press, p. 351.

    Google Scholar 

  3. J.P. Sage, K. Thompson, and R.S. Withers, An Artificial Neural Network Integrated Circuit Based on MNOS/CCD Principles Proc. Conf. Neural Networks for Computing, Snowbird, Utah, 1986, J.S. Denker (ed.), p. 381, AIP Proc. 151.

    Google Scholar 

  4. J. Raffel, J. Mann, R. Berger, A. Soares, S. Gilbert, A Generic Architecture for Wafer-Scale Neuromorphic Systems, Proc. IEEE Int. Conf. Neural Networks, San Diego, 1987, p. III-501, M. Caudill and C. Butler (eds.), IEEE 87TH0191–7.

    Google Scholar 

  5. A. P. Thakoor, A. Moopen, J. Lambe and S. K. Khanna, Electronic Hardware Implementations of Neural Networks, Applied Optics, 26, p. 5085 (1987).

    Article  CAS  Google Scholar 

  6. D. W. Tank and J. J. Hopfield, Simple “Neural” Optimization Networks: An A/D Converter, Signal decision Circuit and a Linear Programming Circuit, IEEE Trans. Circuits and Systems, CAS-33, p. 533 (1986).

    Google Scholar 

  7. For an up-to-date picture of the status of neural network modeling see e.g.: Proc. IEEE Conf. Neural Information Processing Systems - Natural and Synthetic in Denver, Colorado,1987, D.Anderson (ed. ), American Institute of Physics (publisher ), (1988).

    Google Scholar 

  8. D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, Parallel Distributed Processing, MIT Press, (1986).

    Google Scholar 

  9. T. Kohonen, Self-Organization and Associative Memory, Springer Verlag, New York, (1984).

    Google Scholar 

  10. G. Carpenter and S. Grossberg, ART 2: Self-Organization of Stable Category Recognition Code for Analog Input Patterns, Applied Optics, 26, p. 4919, (1987).

    Article  CAS  Google Scholar 

  11. R.P Lippmann, An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, 4/2 p. 4, (1987).

    Article  Google Scholar 

  12. J.S. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L.Jackel and J. Hopfield, Large Automatic Learning, Rule Extraction, and Generalization, Complex Systems, 1, p. 877, (1987).

    Google Scholar 

  13. L.D. Jackel, R.E. Howard, H.P. Graf, B. Straughn, and J.S. Denker, Artificial Neural Networks for Computing, J. Vac. Sci. Tech., B4, p. 61 (1986).

    Google Scholar 

  14. H.P. Graf, L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M. Tennant, and D. Schwartz, VLSI Implementation of a Neural Network Memory with Several Hundred Neurons,Proc. Conf. Neural Networks for Computing, 1986, J.S. Denker (ed.), p.182, AIP Proc 151.

    Google Scholar 

  15. H.P. Graf, L.D. Jackel, and W. Hubbard, VLSI Implementation of a Neural Network Model, IEEE COMPUTER, March 1988.

    Google Scholar 

  16. M.J.M. Pelgrom, H.E.J. Wulms, P. Van Der Stokker, and R.A. Bergamaschi, FEBRIS: A Chip for Pattern Recognition, IEEE J. Solid-State Circuits, SC-22, p. 423, (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Graf, H.P., Jackel, L.D. (1988). VLSI Implementations of Neural Network Models. In: Tewksbury, S.K., Dickinson, B.W., Schwartz, S.C. (eds) Concurrent Computations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5511-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5511-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5513-7

  • Online ISBN: 978-1-4684-5511-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics