Skip to main content

An Ideology For Nanoelectronics

  • Chapter
Concurrent Computations

Abstract

The performance limits of conventional integrated circuits will be reached within twenty years. Avoiding these limits requires revolutionary approaches to both devices and architectures that exploit the unique properties of nanometer- sized electronic structures. The casualties of this revolution will include high connectivity architectures, transistors, and classical circuit concepts. One approach, Nanoelectronics, combines quantum coupled devices and cellular automata architectures to provide computing functions that are downscalable to fundamental physical limits. This paper reviews the motivations for nanoelectronics are reviewed, and presents a framework for developing this technology. Some of the issues relevant to nanoelectronic computation are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edward A. Torrero ed., Next-generation Computers, IEEE Press, (1985).

    Google Scholar 

  2. R.T. Bate, Limits to the Performance of VLSI Circuits, VLSI Handbook, Academic Press, (1985).

    Google Scholar 

  3. P.K. Chatterjee, P. Yang, and H. Shichijo, Modeling of Small MOS Devices and Device Limits, Porc.IEEE, Vol. 130 (Part 1 ), No. 3, p. 105 (1983).

    CAS  Google Scholar 

  4. C.P.Yuan, T.N.Trick, Calculation of Capacitance in VLSI Circuits, Proc.ICCD, p. 263, (1982).

    Google Scholar 

  5. K.C.Saraswat and F.Mohammed, Effect of scaling interconnects on time delay of VLSI circuits, IEEE J.Solid-State circuits, vol. SC-17, p 275, April (1982).

    Article  Google Scholar 

  6. M.Uenohara et al., VLSI microstructure science, vol. 9, chapter 11, Academic Press, (1985).

    Google Scholar 

  7. G.A.Frazier, Simulation of Neural Networks, International Conference on Neural Networks, Santa Barbara Calif. (1984).

    Google Scholar 

  8. C.A.Hamilton et al., A High Speed Superconducting A/D Convertor, 37th Annual Device Research Conference, June 25–27, (1979).

    Google Scholar 

  9. R.T.Bate et al., Prospects for Quantum Integrated Circuits, Baypoint Conference on Quantum Well and Superlattice Physics, Proc. of the SPIE, March (1987).

    Google Scholar 

  10. IEEE Journal of Quantum Electronics, Vol QE-22, No.9, September (1986).

    Google Scholar 

  11. M.A.Reed et al., Spatial Quantization in GaAs-AIGaAs Multiple Quantum Dots, J. Vac. Sci. Technol. B, Vol 4, No. 1, p. 358, (1986).

    Article  CAS  Google Scholar 

  12. M.A. Reed, Superlattices and Microstructures, Vol. 2, p. 65, (1986).

    Article  CAS  Google Scholar 

  13. William R. Frensley, Transient Response of a Tunneling Device Obtained From the Wigner Function, Phys. Rev. Lett., Vol 57, No. 22, p2853, (1986).

    Article  Google Scholar 

  14. Stephen Wolfram ed., Theory and applications of cellular automata, Singapore Pub. (1986).

    Google Scholar 

  15. E.R.Berlekamp et al., Winning Ways For Your Mathematics Plays, vol.2, Academic Press (1982).

    Google Scholar 

  16. IEEE Transactions on Computers, Vol C-35, No.2, February (1986).

    Google Scholar 

  17. Z.G.Vranesic and V.C.Hamacher, Ternary Logic in Parallel Multipliers, Journal of Comp., Vol. 15, No. 3, p. 254, November (1972).

    Google Scholar 

  18. G.A.Frazier, To be published.

    Google Scholar 

  19. Gerard Y. Vichniac, Simulating Physics With Cellular Automata, Physica D, vol.10D, No.1 and 2, p. 96 (1984).

    Google Scholar 

  20. J.V.McCanny et al., Completely Iterative, Pipelined Multiplier Array Suitable for VLSI, Proc. IEEE, vol. 129, No. 2, p. 40, (1982).

    Google Scholar 

  21. C-W Wu, P.R.Cappello and M.Saboff, An FIR filter tissue, Proc. 19th Asilomar conference on circuit systems, and computers, Pacific Grove, Ca, November, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Frazier, G. (1988). An Ideology For Nanoelectronics. In: Tewksbury, S.K., Dickinson, B.W., Schwartz, S.C. (eds) Concurrent Computations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5511-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5511-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5513-7

  • Online ISBN: 978-1-4684-5511-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics