Skip to main content

Abstract

Studies on the oxygen metabolism of phagocytes began in 1933 with the observation that during phagoytosis, white blood cells (WBC) undergo a striking increase in oxygen consumption.1,2 These observations did not attract much attention until the 1950s, when the metabolic activities of neutrophils during phagocytosis of foreign matter were reinvestigated.3–7 The key initial observations that led to further research in the field were that (1) stimulated oxygen consumption is accompanied by enhanced catabolism of glucose through the hexose monophosphate shunt,4, 6 (2) inhibitors of mitochondrial oxidative respiration do not block oxygen consumption,5,6 and (3) hydrogen peroxide is produced in parallel.8,9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldridge CW, Gerard RW: The extra respiration of phagocytosis. Am J Physiol 103: 235–236, 1933.

    CAS  Google Scholar 

  2. Ado AD: Uber den Verlauf der oxidativen und glykolytischen Prozesse in den Leukocyten des entzündeten Gewebes wahrend der Phagocytose. Z. Ges. Exp. Med. 87: 473–480, 1933.

    CAS  Google Scholar 

  3. Stahelin H, Suter E, Karnovsky ML: Studies on the interaction between phagocytes and tubercle bacilli. I. Observations on the metabolism of guinea pig leukocytes and influence of phagocytosis. J Exp Med 104: 121–136, 1956.

    PubMed  CAS  Google Scholar 

  4. Stahelin H, Karnovsky ML, Farnham AE, Suter E: Studies on the interaction between phagocytes and tubercle bacilli. III. Some metabolic effects in guinea pigs associated with infection with tubercle bacilli./Exp Med 105: 265–277, 1957.

    CAS  Google Scholar 

  5. Becker H, Munder G, Fischer H: Uber den Leukocytenstoffwechsel bei der Phagocytose. Hoppe Seylers Z Physiol Chem 313: 266–275, 1958.

    PubMed  CAS  Google Scholar 

  6. Sbarra AJ, Karnovsky ML: The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234: 1355–1362, 1959.

    PubMed  CAS  Google Scholar 

  7. Cohn ZA, Morse SI: Functional and metabolic properties of polymorphonuclear leucocytes. I. Observations on the requirements and consequences of particle ingestion. J Exp Med 111:667– 687, 1960.

    PubMed  Google Scholar 

  8. Iyer GYN, Islam MF, Quastel JH: Biochemical aspects of phagocytosis. Nature (Lond) 192:535– 541, 1961.

    Google Scholar 

  9. Paul B, Sbarra AJ: The role of the phagocytes in host-parasite interactions. XIII. The direct quantitative estimation of H202 in phagocytizing cells. Biochim Biophys Acta 156: 168–178, 1968.

    PubMed  CAS  Google Scholar 

  10. Klebanoff SJ: A peroxidase-mediated anti-microbial system in leukocytes. J Clin Invest 46: 1078, 1967.

    Google Scholar 

  11. Klebanoff SJ: Iodination of bacteria: A bactericidal mechanism. J Exp Med 126: 1063–1078, 1967.

    PubMed  CAS  Google Scholar 

  12. Strauss RR, Paul BB, Jacobs AA, Sbarra AJ: Role of the phagocyte in host-parasite XXII. H202-dependent decarboxylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J Reticuloendothel Soc 7: 754–761, 1970.

    PubMed  CAS  Google Scholar 

  13. Iyer GYN, Quastel JH: NADPH and NADH oxidation by guinea pig polymorphonuclear leucocytes. Can J Biochem 41: 427–434, 1963.

    PubMed  CAS  Google Scholar 

  14. Cagan RH, Karnovsky ML: Enzymatic basis of the respiratory stimulation during phagocytosis. Nature (Lond) 204: 255–257, 1964.

    CAS  Google Scholar 

  15. Rossi F, Zatti M: Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis. Br J Exp Pathol 45: 548–559, 1964.

    PubMed  CAS  Google Scholar 

  16. Rossi F, Romeo D, Patriarca P: Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leukocytes and macrophages. J Reticuloendothel Soc 12: 127–149, 1972.

    PubMed  CAS  Google Scholar 

  17. Babior BM, Kipnes RS, Curnutte JT: Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52: 741–744, 1973.

    PubMed  CAS  Google Scholar 

  18. Bridges RA, Berendes H, Good RA: A fatal granulomatous disease of childhood. The clinical, pathological, and laboratory features of a new syndrome. J Dis Child 97: 387–408, 1959.

    CAS  Google Scholar 

  19. Holmes B, Page AR, Good RA: Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46: 1422–1432, 1967.

    PubMed  CAS  Google Scholar 

  20. Curnutte JT, Whitten DM, Babior BM: Defective superoxide formation by granulocytes from patients with chronic granulomatous disease. N Engl J Med 290: 593–597, 1974.

    PubMed  CAS  Google Scholar 

  21. Hohn DC, Lehrer RI: NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55: 707–713, 1975.

    PubMed  CAS  Google Scholar 

  22. Dewald B, Baggiolini M, Curnutte JT, Babior BM: Subcellular localization of the superoxide- forming enzyme in human neutrophils. J Clin Invest 63: 21–29, 1979.

    PubMed  CAS  Google Scholar 

  23. Nathan CF, Karnovsky ML, David JR: Alterations of macrophage functions by mediators from lymphocytes. J Exp Med 133: 1356–1376, 1971.

    PubMed  CAS  Google Scholar 

  24. Karnovsky ML, Lazdins J, Drath D, Harper A: Biochemical characteristics of activated macrophages. Ann NY Acad Sci 256: 266–274, 1975.

    PubMed  CAS  Google Scholar 

  25. Rossi F, Zabucchi G, Romeo D: Metabolism of phagocytosing mononuclear phagocytes, in Vanurth R (ed): Mononuclear Phagocytes in Immunity, Infection and Pathology. Oxford, Blackwell Scientific, 1975, p 441.

    Google Scholar 

  26. Nathan CF, Root RK: Hydrogen peroxide release from mouse peritoneal macrophages: Dependence on sequential activation and triggering. J Exp Med 146: 1648–1662, 1977.

    PubMed  CAS  Google Scholar 

  27. Johnston RB, Godzik CA, Cohn ZA: Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med 148: 115–127, 1978.

    PubMed  CAS  Google Scholar 

  28. Nathan C, Nogueira N, Juangbhanich: Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med 149: 1056–1068, 1979.

    PubMed  CAS  Google Scholar 

  29. Nathan CF, Brukner LM, Silverstein SC, Cohn ZA: Extracellular cytolysis by activated macrophages and granulocytes. J Exp Med 149: 84–99, 1979.

    PubMed  CAS  Google Scholar 

  30. Shinagawa Y, Tanaka C, Teraoka A, Shinagawa Y: A new cytochrome in neutrophilic granules of rabbit leukocytes. J Biochem 59: 622–624, 1966.

    PubMed  CAS  Google Scholar 

  31. Segal AW, Jones OTG: Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature (Lond) 276: 515–517, 1978.

    CAS  Google Scholar 

  32. Segal AW, Jones OTG, Webster D, Allison AC: Absence of a newly described cytochrome b from neutrophils of patients with chronic grenulomatous disease. Lancet 2: 446–449, 1978.

    PubMed  CAS  Google Scholar 

  33. Segal AW, Cross AR, Garcia RC: Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med 308:245– 251, 1983.

    Google Scholar 

  34. Tauber AI, Goetzl EJ: Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution and partial characterization. Biochemistry 18: 5576–5584, 1979.

    PubMed  CAS  Google Scholar 

  35. Gabig TG, Babior BM: The O2 forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme. J Biol Chem 254: 9070–9074, 1979.

    PubMed  CAS  Google Scholar 

  36. Bromberg Y, Pick E: Unsaturated fatty acids stimulate NADPH–dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88: 213 - 221, 1984.

    PubMed  CAS  Google Scholar 

  37. Heyneman RA, Vercauteren RE: Activation of a NADPH oxidase from horse polymorpholuclear leukocytes in a cell-free system. J Leukocyte Biol 36: 751–759, 1984.

    PubMed  CAS  Google Scholar 

  38. Sbarra AJ, Selvaray RJ, Paul BB, et al: Biochemical, functional, and structural aspects of phagocytosis. Int Rev Exp Pathol 16: 249–271, 1976.

    PubMed  CAS  Google Scholar 

  39. Klebanoff SJ, Clark RA: The Neutrophil: Function and Clinical Disorders. Amsterdam, North- Holland, 1978.

    Google Scholar 

  40. Rossi F, Patriarca P, Romeo D: Metabolic changes accompanying phagocytosis, in Sbarra AJ, Strauss R (eds): The Reticuloendothelial System. A Comprehensive Treatise. New York, Plenum, 1980, vol 2, p 153.

    Google Scholar 

  41. Badwey JA, Karnovsky ML: Active oxygen species and the functions of phagocytic cells. Annu Rev Biochem 49: 695–726, 1980.

    PubMed  CAS  Google Scholar 

  42. Babior BM: Oxidants from phagocytes: Agents of defense and destruction. Blood 64: 959–966, 1984.

    PubMed  CAS  Google Scholar 

  43. Rossi F: The 02 forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function. Biochim Biophys Acta 853: 65–89, 1986.

    PubMed  CAS  Google Scholar 

  44. Roder JC, Helfand SL, Werkmeister J, et al: Oxygen intermediates are triggered early in the cytolytic pathway of human NK cells. Nature (Lond) 298: 569–572, 1982.

    CAS  Google Scholar 

  45. Volkman DJ, Buescher ES, Gallin JI, Fauci AS: B cell lines as models for inherited phagocytic diseases: Abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak-Higashi syndrome. J Immunol 133: 3006–3009, 1984.

    PubMed  CAS  Google Scholar 

  46. Nathan CF, Mercer-Smith JA, Desantis NM, Palladino M: Role of oxygen in T cell-mediated cytolysis. J Immunol 129: 2164–2171, 1982.

    PubMed  CAS  Google Scholar 

  47. Strauss BS, Stetson CA: Studies on the effect of certain macromolecular substances on the respiratory activity of the leukocytes of peripheral blood. J Exp Med 112: 653–669, 1960.

    PubMed  CAS  Google Scholar 

  48. Zatti M, Rossi F: Relationship between glycolysis and respiration in surfactant-treated leucocytes. Biochim Biophys Acta 148: 553–555, 1967.

    PubMed  CAS  Google Scholar 

  49. Graham RC, Karnovsky MJ, Shafer AW, et al: Metabolic and morphological observations on the effect of surface-active agents on leukocytes. J Cell Biol 32: 629–647, 1967.

    PubMed  CAS  Google Scholar 

  50. Patriarca P, Zatti M, Cramer R, Rossi F: Stimulation of the respiration of polymorphonuclear leucocytes by phospholipase C. Life Sci 9: 841–849, 1970.

    CAS  Google Scholar 

  51. Johnston RB Jr: Oxygen metabolism and the microbicidal activity of macrophages. Fed Proc 37: 2759–2764, 1978.

    PubMed  CAS  Google Scholar 

  52. Nathan CF: Regulation of macrophage oxidative metabolism and parasitic activity, in Vanfurth R (ed): Mononuclear Phagocytes. Characteristics, Physiology and Function. Dordrecht, Martinus Niijhoff, 1985, p 411.

    Google Scholar 

  53. Berton G, Gordon S: Role of the plasmamembrane in the regulation of superoxide anion release by macrophages, in Van Furth R (ed): Mononuclear Phagocytes. Characteristics, Physiology and Function. Dordrecht, Martinus Niijhoff, 1985, p 435.

    Google Scholar 

  54. Curnutte JT, Babior BM, Karnovsky ML: Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process. J Clin Invest 63: 637–647, 1979.

    PubMed  CAS  Google Scholar 

  55. Romeo D, Zabucchi G, Rossi F: Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin A. Nature (Lond) 243: 111–112, 1973.

    CAS  Google Scholar 

  56. Rossi F, De Togni P, Bellavite P, et al: Relationship between the binding of N-Formyl-Methionyl- Leucyl-Phenylalanine and the respiratory response in human neutrophils. Biochem Biophys Acta 758: 168–175, 1983.

    PubMed  CAS  Google Scholar 

  57. Cohen HJ, Chovaniec ME, Wilson MK, Newburger PE: Con-A-stimulated superoxide production by granulocytes: Reversible activation of NADPH oxidase. Blood 60: 1188–1194, 1982.

    PubMed  CAS  Google Scholar 

  58. Simkowitz L, Atkinson JP, Spilberg I: Stimulus-specific deactivation of chemotactic factor- induced cyclic AMP response and superoxide generation by human neutrophils. J Clin Invest 66: 736–747, 1980.

    Google Scholar 

  59. Berton G, Gordon S: Desensitization of macrophages to stimuli which induce secretion of superoxide anion. Down-regulation of receptors for phorbol myristate acetate. Eur J Immunol 13: 620–627, 1983.

    PubMed  CAS  Google Scholar 

  60. Berton G, Gordon S: Modulation of macrophage mannosyl-specific receptors by cultivation on immobilised zymosan. Effects on superoxide release and phagocytosis. Immunology 49: 705–715, 1983.

    PubMed  CAS  Google Scholar 

  61. De Togni P, Cabrini G, Di Virgilio F: Cyclic AMP inhibition of fMet-Leu-Phe-dependent metabolic responses in human neutrophils is not due to its effects on cytosolic Ca2+. Biochem J 224: 629–635, 1984.

    PubMed  Google Scholar 

  62. De Togni P, Bellavite P, Delia-Bianca V, et al: Intensity and kinetics of the respiratory burst of human neutrophils in relation to receptor occupancy and rate of occupation by formyl-methionyl- leucyl-phenylalanine. Biochim Biophys Acta 838: 12–22, 1985.

    PubMed  Google Scholar 

  63. Patriarca P, Dri P, Kakinuma K, et al: Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. I. Evidence for superoxide involvement in the oxidation of NADPH2. Biochim Biophys Acta 385: 380–386, 1975.

    PubMed  CAS  Google Scholar 

  64. Curnutte JT, Karnovsky ML, Babior BM: Manganese-dependent NADPH oxidation by granulocyte particles. Role of superoxide and nonphysiological nature of the manganese requirement. J Clin Invest 57: 1059–1067, 1976.

    PubMed  CAS  Google Scholar 

  65. Bellavite P, Berton G, Dri P: Studies on the NADPH oxidation by subcellular particles from phagocytosing polymorphonuclear leucocytes. Evidence for the involvement of three mechanisms. Biochim Biophys Acta 591: 434–444, 1980.

    PubMed  CAS  Google Scholar 

  66. Zatti M, Rossi F: Early changes of hexose monophosphate pathway activity and of NADPH oxidation in phagocytizing leukocytes. Biochim Biophys Acta 99: 557–561, 1965.

    PubMed  CAS  Google Scholar 

  67. Bellavite P, Serra MC, Davoli A, Rossi F: Selective enrichment of NADPH oxidase activity in phagosomes from guinea pig polymorphonuclear leukocytes. Inflammation 6: 21–29, 1982.

    PubMed  CAS  Google Scholar 

  68. Bromberg Y, Pick E: Activation of NADPH dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260: 13539–13545, 1985.

    PubMed  CAS  Google Scholar 

  69. Clark RA, Leidal KG, Pearson DW, Nauseef WM: NADPH oxidase of human neutrophils: Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262: 4065–4074, 1987.

    PubMed  CAS  Google Scholar 

  70. Berton G, Bellavite P, Dri P, et al: The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages. J Pathol 136: 273–279, 1982.

    PubMed  CAS  Google Scholar 

  71. Sasada M, Pabst JM, Johnston RB: Activation of mouse peritoneal macrophages by lipopolysac- charide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem 258: 9631–9635, 1983.

    PubMed  CAS  Google Scholar 

  72. Tsunawaki S, Nathan CF: Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem 259: 4305–4312, 1984.

    PubMed  CAS  Google Scholar 

  73. Berton G, Cassatella M, Cabrini G, Rossi F: Activation of mouse macrophages causes no change in expression and function of phorbol diester receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase. Immunology 54: 371–379, 1985.

    PubMed  CAS  Google Scholar 

  74. Cassatella M, Delia-Bianca V, Berton G, Rossi F: Activation by gamma interferon of human macrophages capability to produce toxic oxygen molecules is accompanied by decreased Km of the superoxide generating NADPH oxidase. Biochem Biophys Res Commun 132: 908–914, 1985.

    PubMed  CAS  Google Scholar 

  75. Tsunawaki S, Nathan CF: Macrophage deactivation. Altered kinetic properties of superoxide- producing enzyme after exposure to tumor cell-conditioned medium. J Exp Med 164: 1319–1331, 1986.

    PubMed  CAS  Google Scholar 

  76. Babior BM, Kipnes RS: Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement. Blood 50: 517–524, 1977.

    PubMed  CAS  Google Scholar 

  77. Light DR, Walsh C, O’Callaghan AM, et al: Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 20: 1468–1476, 1981.

    PubMed  CAS  Google Scholar 

  78. Gabig TG, Lefker BA: Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent Of -generating oxidase from human neutrophils. Biochem Biophys Res Commun 118: 430–436, 1984.

    PubMed  CAS  Google Scholar 

  79. Cross AR, Parkinson JF, Jones OTG: The superoxide-generating oxidase of leucocytes. NADPH- dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 223:337– 344, 1984.

    Google Scholar 

  80. Kakinuma K, Kaneda M, Chiba T, Ohnishi T: Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase. J Biol Chem 261: 9426–9432, 1986.

    PubMed  CAS  Google Scholar 

  81. Cross AR, Jones OTG, Harper AM, Segal AW: Oxidation-reduction properties of the cytochrome b found in the plasmamembrane fraction of human neutrophils. A possible oxidase in the respiratory burst. Biochem J 194: 599–606, 1981.

    PubMed  CAS  Google Scholar 

  82. Berton G, Cassatella M, Bellavite P, Rossi F: Molecular basis of macrophage activation. Expression of the low potential cytochrome b and its reduction upon cell stimulation in activated macrophages. J Immunol 136: 1393–1396, 1986.

    PubMed  CAS  Google Scholar 

  83. Roberts PJ, Cross AR, Jones OTG, Segal AW: Development of cytochrome b and active oxidase system in association with maturation of a human promyelocytic (HL-60) cell line. J Cell Biol 95: 720–726, 1982.

    PubMed  CAS  Google Scholar 

  84. Segal AW, Jones OTG: Reduction and subsequent oxidation of a cytochrome b of human neutrophils after stimulation with phorbol myristate acetate. Biochem Biophys Res Commun 88:130– 134, 1979.

    Google Scholar 

  85. Cross AR, Higson FK, Jones OTG, et al: The enzymic reduction and kinetics of oxidation of cytochrome b–245 of neutrophils. Biochem J 204: 479–485, 1982.

    PubMed  CAS  Google Scholar 

  86. Iizuka T, Kanegasaki S, Makino R, Ishimura Y: Studies on neutrophil b–type cytochrome in situ by low temperature absorption spectroscopy. J Biol Chem 260: 12049–12053, 1985.

    PubMed  CAS  Google Scholar 

  87. Segal AW, Jones OTG: Absence of cytochrome b reduction from both femele and male patients with chronic granulomatous disease. FEBS Lett 110: 111–114, 1980.

    PubMed  CAS  Google Scholar 

  88. Cross AR, Jones OTG, Garcia R, Segal AW: The association of FAD with the cytochrome b-245 of human neutrophils. Biochem J 208: 759–763, 1982.

    PubMed  CAS  Google Scholar 

  89. Gabig TG: The NADPH–dependent Of generating oxidase from human neutrophils. Identification of a flavoprotein component that is deficient in a patient with chronic granulomatous disease. J Biol Chem 258: 6352–6356, 1983.

    PubMed  CAS  Google Scholar 

  90. Hamers MN,, de Boer M, Meerhof LJ et al: Complementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease. Nature (Lond) 307: 553–555, 1984.

    CAS  Google Scholar 

  91. Bellavite P, Jones OTG, Cross AR, et al: Composition of partially purified NADPH oxidase from pig neutrophils. Biochem J 223: 639–648, 1984.

    PubMed  CAS  Google Scholar 

  92. Berton G, Papini E, Cassatella M, et al: Partial purification of the superoxide–generating system of macrophages, possible association of the NADPH oxidase activity with a low potential cytochrome b. Biochim Biophys Acta 810: 164–173, 1985.

    PubMed  CAS  Google Scholar 

  93. Rossi F, Bellavite P, Serra MC, Papini E: Characterization of phagocyte NADPH oxidase, in Van Furth R (ed): Mononuclear Phagocytes. Characteristics, Physiology and Function. Boston, Martinus Nijhoff, 1985, p 423.

    Google Scholar 

  94. Crawford DR, Schneider DL: Evidence that a quinone may be required for the production of superoxide and hydrogen peroxide in neutrophils. Biochem Biophys Res Commun 99: 1277–1286, 1981.

    PubMed  CAS  Google Scholar 

  95. Gabig TG, Lefker BA: Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559. J Biol Chem 260:3991– 3995, 1985.

    Google Scholar 

  96. Glass GA, DeLisle DM, De Togni P, et al: The respiratory burst oxidase of human neutrophils. Further studies of the purified enzyme. J Biol Chem 261: 13247–13251, 1986.

    PubMed  CAS  Google Scholar 

  97. Doussiere J, Vignais PV: Purification and properties of O2 generating oxidase from bovine polymorphonuclear neutrophils. Biochemistry 24: 7231–7239, 1985.

    PubMed  CAS  Google Scholar 

  98. Sakane F, Takahashi K, Koyama Y: Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O formation in guinea pig polymorphonuclear leukocytes. J Biochem. (Tokyo) 96: 671–678, 1984.

    CAS  Google Scholar 

  99. Serra MC, Bellavite P, Davoli A, et al: Isolation from neutrophil membranes of a complex containing active NADPH oxidase and cytochrome b-245. Biochim Biophys Acta 788: 138–146, 1984.

    PubMed  CAS  Google Scholar 

  100. Bellavite P, Papini E, Zeni L, et al: Studies on the nature and activation of O2 forming NADPH oxidase of leukocytes. Identification of a phosphorylated component of the active enzyme. Free RadRes Comm. 1: 11–29, 1985.

    CAS  Google Scholar 

  101. Tamoto K, Washida N, Yukishige K, Et Al: Electrophoretic isolation of a membrane-bound NADPH oxidase from guinea-pig polymorphonuclear leukocytes. Biochim Biophys Acta 732:569– 578, 1983.

    Google Scholar 

  102. Markert M, Glass GA, Babior BM: Respiratory burst oxidase from human neutrophils: Purification and some properties. Proc Natl Acad Sci USA 82: 3144–3148, 1985.

    PubMed  CAS  Google Scholar 

  103. Harper AM, Chaplin MF, Segal AW: Cytochrome b-245 from human neutrophils is a glycoprotein. Biochem J 227: 783–788, 1985.

    PubMed  CAS  Google Scholar 

  104. Pember SO, Heyl BL, Kinkade JM Jr, Lambeth JD: Cytochrome b558 from (bovine) granulocytes. Partial purification from Triton X-114 extracts and properties of the isolated cytochrome. J Biol Chem 259: 10590–10595, 1984.

    PubMed  CAS  Google Scholar 

  105. Lutter R, van Schaik MLJ, van Zwieten R, et al: Purification and partial characterization of the b- type cytochrome from human polymorphonuclear leukocytes. J Biol Chem 260: 2237–2244, 1985.

    PubMed  CAS  Google Scholar 

  106. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ: Characterization of purified cytochrome b559 from the plasma membrane of stimulated human granulocytes. J Cell Biol 103:1908, 1986 (abst).

    Google Scholar 

  107. Segal AW: Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature (Lond) 326: 88–91, 1987.

    CAS  Google Scholar 

  108. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA: The glycoprotein encoded by the X- linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327: 717–720, 1987.

    PubMed  CAS  Google Scholar 

  109. Teahan C, Rowe P, Parker P, et al: The X-linked chronic granulomatous disease gene codes for the 0-chain of cytochrome b-245- Nature 327: 720–721, 1987.

    CAS  Google Scholar 

  110. Parkos CA, Allen RA, Cochrane CG, Jesaitis A J: Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742, 1987.

    Google Scholar 

  111. Berton G, Rosen H, Ezekowitz RAB, et al: Monoclonal antibodies to a particulate superoxide- forming system stimulate a respiratory burst in intact guinea pig neutrophils. Proc Natl Acad Sci USA 83: 4002–4006, 1986.

    PubMed  CAS  Google Scholar 

  112. Royer-Pokora B, Kunkel LM, Monaco AP, et al: Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature (Lond) 322: 32–38, 1986.

    CAS  Google Scholar 

  113. McPhail LC, Snyderman R: Mechanisms of regulating the respiratory burst in leukocytes, in Snyderman R (ed): Regulation of Leukocyte Function New York, Plenum, 1984, p 247.

    Google Scholar 

  114. Grzeskowiak M, Delia Bianca V, Cassatella M, Rossi F: Complete dissociation between the activation of phosphoinositide turnover and of NADPH oxidase by Formyl–methionyl–leucyl- phenylalanine in human neutrophils depleted of Ca2 + and primed by subtreshold doses of phorbol myristate acetate. Biochem Biophys Res Commun 13b5: 785–794, 1986.

    Google Scholar 

  115. Schneider C, Zanetti M, Romeo D: Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils. FEBS Lett 127: 4 - 8, 1981.

    PubMed  CAS  Google Scholar 

  116. Irita K, Takeshige K, Minakami S: Protein phosphorylation in intact pig leukocytes. Biochim Biophys Acta 805: 44 - 52, 1984.

    PubMed  CAS  Google Scholar 

  117. Ohtsuka T, Okamuar N, Ishibashi S: Involvement of protein kinase C in the phosphorylation of 46 kDa proteins which are phosphorylated in parallel with activation of NADPH oxidase in intact guinea pig polymorphonuclear leukocytes. Biochim Biophys Acta 888: 332–337, 1986.

    PubMed  CAS  Google Scholar 

  118. Segal AW, Heyworth PG, Cockroft S, Barrowman MM: Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature (Lond) 316: 547–549, 1985.

    CAS  Google Scholar 

  119. Cox JA, Jeng JA, Sharkey NA, et al: Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest 76: 1932–1938, 1985.

    PubMed  CAS  Google Scholar 

  120. Rossi F, Bellavite P, Papini E: Respiratory response of phagocytes: Terminal NADPH oxidase and the mechanisms of its activation, in Biochemistry of Macrophages. Ciba Foundation Symposium 118. London, Pitman, 1986, p 172–195.

    Google Scholar 

  121. Papini E, Grzeskowiak M, Bellavite P, Rossi F: Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils. FEBS Lett 190: 204–208, 1985.

    PubMed  CAS  Google Scholar 

  122. Kakinuma K: Effects of fatty acids on the oxidative metabolism of leukocytes. Biochim Biophys Acta 348: 76–85, 1974.

    PubMed  CAS  Google Scholar 

  123. McPhail LC, Clayton CC, Snyderman R: A potential second messenger role for unsaturated fatty acids: Activation of Ca2 + -dependent protein kinase C. Science 224: 622–624, 1984.

    PubMed  CAS  Google Scholar 

  124. Badwey JA, Curnutte JT, Robinson JM: Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils: Reversibility by albumin. J Biol Chem 259:7870– 7877, 1984.

    Google Scholar 

  125. Tauber AI, Cox JA, Yeng AY, Blumberg PM: Subcellular activation of the human NADPH- oxidase by arachidonic acid and sodium dodecyl sulfate (SDS) is independent of protein kinase C. Clin Res 34:664, 1986 (abst).

    Google Scholar 

  126. Romeo D, Zabucchi G, Rossi F: Surface modulation of oxidative metabolism of polymorphonuclear leucocytes, in Rossi F, Patriarca PL, Romeo D (eds): Movement, Metabolism and Bactericidal Mechanisms of Phagocytes. Padua, Piccin Medical Books, 1977, p 153.

    Google Scholar 

  127. Aviram I, Simons ER, Babior BM: Reversible blockade of the respiratory burst in human neutrophils by a cleavable cross–linking agent. J Biol Chem 259: 306–311, 1984.

    PubMed  CAS  Google Scholar 

  128. Borregaard N, Heiple JM, Simons ER, Clark RA: Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation. J Cell Biol 97: 52–61, 1983.

    PubMed  CAS  Google Scholar 

  129. Segal AW, Jones OTG: Rapid incorporation of the human neutrophil plasmamembrane cytochrome b into phagocytic vacuoles. Biochem Biophys Res Commun 92: 710–715, 1980.

    PubMed  CAS  Google Scholar 

  130. Yamaguchi T, Kaneda M, Kakinuma K: Is cytochrome b558 translocated into the plasmamembrane from granules during the activation of neutrophils? J Biochem 99: 953–959, 1986.

    PubMed  CAS  Google Scholar 

  131. Lutter R, van Zwieten R, Weening RS: Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts). J Biol Chem 259:9603– 9606, 1984.

    Google Scholar 

  132. Murray HW, Cohn ZA: Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med 152: 1596–1609, 1980.

    PubMed  CAS  Google Scholar 

  133. Nathan CF, Murray HW, Wiebe ME, Rubin BY: Identification of interferon gamma as the lymphokine that activates human macrophages oxidative metabolism and antimicrobial activity. J Exp Med 158: 670–679, 1983.

    PubMed  CAS  Google Scholar 

  134. Nathan CF; Interferon-gamma and macrophage activation in cell-mediated immunity, in Steinman RM and North RJ (eds): Mechanisms of Host Resistance to Infectious Agents, Tumors and Allografts. New York, Rockefeller University Press, 1986, p 165.

    Google Scholar 

  135. Weisbart RH, Golde DW, Clark SC, et al: Human granulocyte-macrophage colony-stimulating factor is a neutrophil activator. Nature (Lond) 314: 361–363, 1985.

    CAS  Google Scholar 

  136. Berton G, Zeni L, Cassatella MA, Rossi F: Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun 138: 1276–1782, 1986.

    PubMed  CAS  Google Scholar 

  137. Cassatella MA, Cappelli R, Delia-Bianca V, et al: Interferon-gamma activates human neutrophil oxygen metabolism and exocytosis. Immunology, 63: 499–506, 1988.

    PubMed  CAS  Google Scholar 

  138. Ezekowitz RAB, Orkin SH, Newburger PE: Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 80: 1009–1016, 1987.

    PubMed  CAS  Google Scholar 

  139. Edelson PJ, Cohn ZA: Peroxidase-mediated mammalian cell cytotoxicity. J Exp Med 138:318– 323, 1973.

    Google Scholar 

  140. Clark RA, Klebanoff SJ, Einstein A, Fefer A: Peroxidase-H202-halide system: Cytotoxicity effect on mammalian tumor cells. Blood 45: 161–170, 1975.

    PubMed  CAS  Google Scholar 

  141. Clark RA, Klebanoff SJ: Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol 119: 1413–1414, 1977.

    PubMed  CAS  Google Scholar 

  142. Nathan C, Cohn Z: Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J Exp Med 152: 198–208, 1980.

    PubMed  CAS  Google Scholar 

  143. Jacobs HS, Craddock PR, Hammerschmidt DE, Moldow CF: Complement-induced granulocyte aggregation. An unsuspected mechanism of disease. N Engl J Med 302: 789–794, 1980.

    Google Scholar 

  144. Fantone JC, Ward PA: Mechanisms of lung parenchymal injury. Am Rev Respir Dis 130: 484–491, 1984.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Berton, G., Dusi, S., Bellavite, P. (1988). The Respiratory Burst of Phagocytes. In: Sbarra, A.J., Strauss, R.R. (eds) The Respiratory Burst and Its Physiological Significance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5496-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5496-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5498-7

  • Online ISBN: 978-1-4684-5496-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics