Skip to main content

Drug-Induced Agranulocytosis and Other Effects Mediated by Peroxidases during the Respiratory Burst

  • Chapter
The Respiratory Burst and Its Physiological Significance

Abstract

There are numerous examples demonstrating strong evidence that toxic reactions to drugs or other chemicals are due to chemically reactive metabolites.1 The form this toxicity takes can vary from cancer (presumably due to reaction of the metabolite with DNA) to anaphylactic reactions [presumably due to the metabolite acting as a hapten and reacting with a protein leading to the induction of immunoglobulin E (IgE) antibodies]. The greatest activity of enzymes capable of metabolizing xenobiotics is found in the liver; however, such enzymatic activity has been found in numerous other organs. One important aspect of this extrahepatic activity is that most reactive metabolites formed in the liver are too reactive to reach other target organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders MW: Bioactivation of Foreign Compounds. Orlando, Academic, 1985.

    Google Scholar 

  2. Moldeus P, Andersson B, Rahimtula A, Berggren M: Prostaglandin synthetase catalyzed activation of paracetamol. Biochem Pharmacol 31: 1363–1368, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Kadlubar F, Frederick C, Weis C, Zenser T: Prostaglandin endoperoxide synthetase-mediated metabolism of carcinogenic aromatic amines and their binding to DNA and protein. Biochem Biophys Res Commun 108:253–258, 1982.

    Google Scholar 

  4. Zenser T, Mattammal M, Armbrecht H, Davis B: Benzidine binding to nucleic acids mediated by peroxidative activity of prostaglandin endoperoxide synthetase. Cancer Res 40: 2839–2845, 1980.

    PubMed  CAS  Google Scholar 

  5. Krauss R, Eling T: Formation of unique arylamine: DNA adducts from 2-aminofluorene activated by prostaglandin H synthase. Cancer Res 45: 1680–1686, 1985.

    PubMed  CAS  Google Scholar 

  6. Krauss R, Eling T: Arachidonic acid-dependent cooxidation: A potential pathway for the activation of chemical carcinogens in vivo. Biochem Pharmacol 33: 3319–3324, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Tsuruta Y, Subrahmanyam V, Marshall W, O’Brien P: Peroxidase-mediated irreversible binding of arylamine carcinogens to DNA in intact polymorphonuclear leukocytes activated by a tumor promoter. Chem Biol Interact 53: 25–35, 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Schultz J, Kaminker K: Myeloperoxidase of leukocyte of normal human blood. I. Content and localization. Arch Biochem 96: 465–467, 1962.

    Article  PubMed  CAS  Google Scholar 

  9. van Furth R, Raeburn J, van Zwet T: Characteristics of human mononuclear phagocytes. Blood 54: 485–500, 1979.

    PubMed  Google Scholar 

  10. Harrison J, Araiso T, Palcic M, Dunford H: Compound I of myeloperoxidase. Biochem Biophys Res Commun 94: 34–40, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Bolscher B, Zoutberg G, Cuperus R, Wever R: Vitamin C stimulates the chlorinating activity of human myeloperoxidase. Biochim Biophys Acta 784: 189–191, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Zgliczynski J, Selvaraj R, Paul B, et al: Chlorination by the myeloperoxidase-H2O2-Cl anti-microbial system at acid and neutral pH. Proc Soc Exp Biol NY 154: 418–422, 1977.

    CAS  Google Scholar 

  13. Winterbourn C: Comparative reactivities of various biological compounds with myeloperoxidase- hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 840: 204–210, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Ichihara S, Tomisawa H, Fukazawa H, Tateishi M: Involvement of leukocyte peroxidases in the metabolism of tenoxicam. Biochem Pharmacol 34: 1337–1338, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Ichihara S, Tomisawa H, Fukazowa H et al: Involvement of leukocytes in the oxidation and chlorination reaction of phenylbutazone. Biochem Pharmacol 35: 3935–3939, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Libby R, Thomas J, Kaiser L, Hager L: Chloroperoxidase halogenation reactions: Chemical versus enzymatic halogenating intermediates. J Biol Chem 257: 5030–5037, 1982.

    PubMed  CAS  Google Scholar 

  17. Marnett L, Bieukowski M, Pagels W, Reed G: Mechanism of xenobiotic cooxidation coupled to prostaglandin H2 biosynthesis, in Samuelson P, Ramewell W, Paoletti R (eds): Advances in Prostaglandin and Thromboxane Research, New York, Raven, 1980, vol 6, pp 149–151.

    Google Scholar 

  18. Reed G, Griffin I, Eling T: Inactivation of prostaglandin H synthase and prostacyclin synthase by phenylbutazone. Mol Pharmacol 27: 109–114, 1985.

    PubMed  CAS  Google Scholar 

  19. Lang P: Sulfones and sulfonamides in dermatology today. J Am Acad Dermatol 1: 479–492, 1979.

    Article  PubMed  Google Scholar 

  20. Morgan J, Marsden C, Coburn J, et al: Dapsone in dermatitis herpetiformis. Lancet 1: 1197–1200, 1955.

    Article  Google Scholar 

  21. Alexander J: Dapsone in the treatment of dermatitis herpetiformis. Lancet 1: 1201–1202, 1955.

    Article  Google Scholar 

  22. Stendahl O, Molin L, Dahlgren C: The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. J Clin Invest 62: 214–220, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Katz S, Hertz K, Crawford P, et al: Effect of sulfones on complement deposition in dermatitis herpetiformis and on complement-mediated guinea-pig reactions. J Invest Dermatol 67: 688–690, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Schifferli J, Jones R: Dapsone and complement. Lancet 2: 368–369, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Drummond L, Gemmell D: The effect of dapsone on complement activation. Agents Actions 13: 435–437, 1983.

    Article  CAS  Google Scholar 

  26. Uetrecht J, Shear N, Biggar W: Dapsone is metabolized by human neutrophils to a hydroxylamine. Pharmacologist 28: 239, 1986.

    Google Scholar 

  27. Uetrecht J, Zahid N, Shear N, Biggar W: Metabolism of dapsone to a hydroxylamine by human neutrophils and mononuclear cells. J Pharmacol Exp Ther 245: 1–6, 1988.

    Google Scholar 

  28. Niwa Y, Sakane T, Miyachi Y: Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates—In comparison with that of colchicine and various scavengers. Biochem Pharmacol 33: 2355–2360, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Ortiz de Montellano P, Reich N: Inhibition of Cytochrome P-450 enzymes, in Ortiz de Montellano P (ed): Cytochrome P-450: Structure, Mechanism, and Biochemistry. New York, Plenum, 1986, p 283.

    Google Scholar 

  30. McKenna W, Chalmers A: Agranulocytosis following dapsone therapy. Br Med J 1: 324–325, 1958.

    Article  PubMed  CAS  Google Scholar 

  31. Ognibene A: Agranulocytosis due to dapsone. Ann Intern Med 72: 521–524, 1970.

    PubMed  CAS  Google Scholar 

  32. Firkin F, Mariani A: Agranulocytosis due to dapsone. Med J Aust 2: 247–251, 1977.

    PubMed  CAS  Google Scholar 

  33. Wilson J, Harris J: Hematologic side-effects of dapsone. Ohio State Med J 73: 557–560, 1977.

    PubMed  CAS  Google Scholar 

  34. Lahuerta-Palacios J, Gomez-Pedraja J, Montalban M, et al: Proliferation of Ig Dx plasma cells after agranulocytosis induced by dapsone. Br Med J 290: 282–283, 1985.

    Article  CAS  Google Scholar 

  35. Weetman R, Boxer L, Brown M, et al: In vitro inhibition of granulopoiesis by 4-amino-4’-hydrox- ylaminodiphenyl sulfone. Br J Haematol 45: 361–370, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Wallerstein R, Condit P, Brown J, Morrison F: Statewide study of chloramphenicol—Therapy and fatal aplastic anemia. JAMA 208: 2045–2050, 1969.

    Article  PubMed  CAS  Google Scholar 

  37. Fouts J, Brodie B: The enzymatic reduction of chloramphenicol, p-nitrobenzoic acid and other aromatic nitro compounds in mammals. J Pharmacol Exp Ther 119: 197–207, 1957.

    PubMed  CAS  Google Scholar 

  38. Scheline R: Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 25: 451–523, 1973.

    PubMed  CAS  Google Scholar 

  39. Ascherl M, Eyer P, Kampffmeyer H: Formation and disposition of nitrosochloramphenicol in rat liver. Biochem Pharmacol 34: 3755–3763, 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Yunis A, Miller A, Salem Z, et al: Nitroso-chloramphenicol: Possible mediator in chloramphenicol- induced aplastic anemia. J Lab Clin Med 96: 36–46, 1980.

    PubMed  CAS  Google Scholar 

  41. Gross B, Branchflower R, Burke T, et al: Bone marrow toxicity in vitro of chloramphenicol and its metabolites. Toxicol Appl Pharmacol 64: 557–565, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Uetrecht J, Zahid N, Rubin R: Metabolism of procainamide to a hydroxylamine by human neutrophils and mononuclear cells. Chem Res Toxicol, 1988 (in press).

    Google Scholar 

  43. Rubin R, Uetrecht J, Jones J: Cytotoxicity of oxidative metabolites of procainamide. J Pharmacol Exp Ther 242: 833–841, 1987.

    PubMed  CAS  Google Scholar 

  44. Reider M, Uetrecht J, Shear N, Spielberg S: Synthesis and in vitro toxicity of hydroxylamine metabolites of sulfonamides. J Pharmacol Exp Ther 244: 724–728, 1988.

    Google Scholar 

  45. Kutscher A, Lane, Segall R: The clinical toxicity of antibiotics and sulfonamides: A comparative review of the literature based on 104,672 cases treated systematically. J Allergy 25: 135–150, 1954.

    Article  PubMed  CAS  Google Scholar 

  46. Berger B, Hauser D: Agranulocytosis due to new sustained-release procainamide. Am Heart J 105: 1035–1036, 1983.

    Article  PubMed  CAS  Google Scholar 

  47. Ellrodt A, Murata G, Riedinger M, et al: Severe neutropenia associated with sustained-release procainamide. Ann Intern Med 100: 197–201, 1984.

    PubMed  CAS  Google Scholar 

  48. Nelson J, Lutton J, Fass A: Procainamide-induced agranulocytosis with reversible myeloid sen-sitivity. Am J Hematol 17: 427–432, 1984.

    Article  PubMed  CAS  Google Scholar 

  49. Rab S, Alam M: Severe agranulocytosis during para-aminosalicylic acid therapy. Br J Dis Chest 64: 164–168, 1970.

    Article  PubMed  CAS  Google Scholar 

  50. Bodenheimer H, Samarel A: Agranulocytosis associated with aprindine therapy. Arch Intern Med 139: 1181–1182, 1979.

    Article  PubMed  Google Scholar 

  51. Lawrence B, Sarter R, Lipton A, et al: Pancytopenia induced by aminoglutethimide in the treatment of breast cancer. Cancer Treatm Rep 62: 1581–1583, 1978.

    CAS  Google Scholar 

  52. Taurog A: The mechanism of action of the thioureylene antithyroid drugs. Endocrinology 98:1031— 1046, 1976.

    Google Scholar 

  53. Nagasaka A, Hidaka H: Effect of antithyroid agents 6-propyl-2-thiouracil and l-methyl-2-mercap- toimidazole on human thyroid peroxidase. J Clin Endocrinol Metab 43: 152–158, 1976.

    Article  PubMed  CAS  Google Scholar 

  54. Nakashima T, Taurog A, Riesco G: Mechanism of action of thioureylene antithyroid drugs: Factors affecting intrathyroidal metabolism of propylthiouracil and methimazole in rats. Endocrinology 103: 2187–2197, 1978.

    Article  PubMed  CAS  Google Scholar 

  55. Davidson B, Soodak M, Neary J, et al: The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 103: 871–882, 1978.

    Article  PubMed  CAS  Google Scholar 

  56. Engler H, Taurog A, Nakashima T: Mechanism of inactivation of thyroid peroxidase by thio-ureylene drugs. Biochem Pharmacol 31: 3801–3806, 1982.

    Article  PubMed  CAS  Google Scholar 

  57. Engler H, Taurog A, Luthy C, Dorris M: Reversible and irreversible inhibition of thyroid perox- idase-catalyzed iodination by thioureylene drugs. Endocrinology 112: 86–95, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Imamura M, Aoka N, Saito T, et al: Inhibitory effects of antithyroid drugs on oxygen radical formation in human neutrophils. Acta Endocrinol (Copenh) 112: 210–216, 1986.

    CAS  Google Scholar 

  59. Weetman A, Holt M, Campbell A, et al: Methimazole and generation of oxygen radicals by monocytes: Potential role in immunosuppression. Br Med J 288: 518–520, 1984.

    Article  CAS  Google Scholar 

  60. Kariya K, Lee E, Hirouchi M: Relationship between leukopenia and bone marrow myeloperoxidase in the rat treated with propylthiouracil. Jpn J Pharmacol 36: 217–222, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Forsland T, Borgmastars F, Fyhrquist F: Captropril associated leukopenia confirmed by rechallenge in patient with renal failure. Lancet 1: 166, 1981.

    Article  Google Scholar 

  62. Weiss A, Markenson J, Weiss M, Kammerer W: Toxicity of d-penicillamine in rheumatoid arthritis. Am J Med 64: 114–120, 1978.

    Article  PubMed  CAS  Google Scholar 

  63. Harrison J, Schultz J: Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251: 1371–1374, 1976.

    PubMed  CAS  Google Scholar 

  64. Kadar D, Kalow W: Acute and latent leukopenic reaction to antipyrine. Clin Pharmacol Ther 28: 820–822, 1980.

    Article  PubMed  CAS  Google Scholar 

  65. Barrett A, Weller E, Rozengust N, et al: Amidopyrine agranulocytosis: Drug inhibition of gran-ulocyte colonies in the presence of patient’s serum. Br Med J 2: 850–851, 1976.

    Article  PubMed  CAS  Google Scholar 

  66. Huguley C: Agranulocytosis induced by dipyrone, a hazardous antipyretic and analgesic. JAMA 189: 938–941, 1964.

    Article  PubMed  CAS  Google Scholar 

  67. Vincent P: Drug-induced aplastic anaemia and agranulocytosis: Incidence and mechanisms. Drugs 31: 52–63, 1986.

    Article  PubMed  CAS  Google Scholar 

  68. Pisciotta V: Drug-induced agranulocytosis. Drugs 15: 132–143, 1978.

    Article  PubMed  CAS  Google Scholar 

  69. Weitzman S, Stossel T: Drug-induced immunological neutropenia. Lancet 1: 1068–1072, 1978.

    Article  PubMed  CAS  Google Scholar 

  70. Fibbe W, Claas F, Van der Star-Dijkstra W, Et Al: Agranulocytosis induced by propylthiouracil: evidence of a drug dependent antibody reacting with granulocytes, monocytes, and haematopoietic progenitor cells. Br J Haematol 64: 363–373, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Nakamura M, Yamazaki I, Kotoni T, Ohtaki S: Thyroid peroxidase selects the mech1- or 2-electron oxidation of phenols, depending on their substituents. J Biol Chem 260:13546– 13552, 1985.

    Google Scholar 

  72. Takayama S, Aihara K, Onodera T, Akimoto T: Antithyroid effects of propylthiouracil and sul- famonomethoxine in rats and monkeys. Toxicol Appl Pharmacol 82: 191–199, 1986.

    Article  PubMed  CAS  Google Scholar 

  73. Haynes R, Murad F: Thyroid and antithyroid drugs, in Gilman A, Goodman L, Rail T, Murad F (eds): The Pharmacological Basis of Therapeutics, ed 7. New York, Macmillan, 1985, p 1402.

    Google Scholar 

  74. Hughes SW, Burley D: Aminoglutethimide: Side-effect turned to therapeutic advantage. Postgrad Med J 46: 409–416, 1970.

    Article  CAS  Google Scholar 

  75. Vrhovac B: Anti-inflammatory analgesics and drugs used in gout, in Dukes M (ed): Meyler’s Side Effects of Drugs, ed 10. Amsterdam, Elsevier, 1984, p 154.

    Google Scholar 

  76. Griciute L, Tomatis L: Carcinogenicity of dapsone in mice and rats. Int J Cancer 25: 123–129, 1980.

    Article  PubMed  CAS  Google Scholar 

  77. Park BK, Coleman J, Kitteringham N: Drug disposition and drug hypersensitivity. Biochem Pharmacol 36: 581–590, 1987.

    Article  PubMed  CAS  Google Scholar 

  78. Ahlstedt S, Kristofferson A: Immune mechanisms for induction of penicillin allergy. Prog Allergy 30: 67–134, 1982.

    PubMed  CAS  Google Scholar 

  79. Uetrecht J, Sweetman B, Woosley, R, Oates J: Metabolism of procainamide to a hydroxylamine by rat and human hepatic microsomes. Drug Metab Dispos 12: 77–81, 1984.

    PubMed  CAS  Google Scholar 

  80. Uetrecht J: Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide. J Pharmacol Exp Ther 232: 420–425, 1985.

    PubMed  CAS  Google Scholar 

  81. Shear N, Spielberg S: In vitro evaluation of a toxic metabolite of sulfadiazine. Can J Physiol Pharmacol 63: 1370–1372, 1985.

    Article  PubMed  CAS  Google Scholar 

  82. Reider M, Uetrecht J, Miller M, Spielberg S: Toxicity of a reactive intermediate of sulfadiazine in an in vitro system. Pharmacologist 28: 124, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Uetrecht, J.P. (1988). Drug-Induced Agranulocytosis and Other Effects Mediated by Peroxidases during the Respiratory Burst. In: Sbarra, A.J., Strauss, R.R. (eds) The Respiratory Burst and Its Physiological Significance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5496-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5496-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5498-7

  • Online ISBN: 978-1-4684-5496-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics