Skip to main content

Distribution of Skeletal Muscle Blood Flow During Locomotory Exercise

  • Conference paper
Book cover Oxygen Transfer from Atmosphere to Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 227))

Abstract

If submaximal, rhythmic exercise is to be maintained for an extended period of time (60 min for example), the ATP used to fuel muscular contractions must be provided primarily by oxidative metabolism. As a result, oxygen transfer from air to active skeletal muscle tissue must be matched to the metabolic rate of the muscles. In this regard, up to this point in this symposium, we have considered the determinants of blood oxygenation. The transfer of the oxygenated blood to the skeletal muscle capillaries is the next step in the oxygen transport process. After this convective process, oxygen transfer into the myocytes is determined by the perfused capillarity of the tissue and the determinants of diffusion (i.e., O2 concentrations in blood and tissue, diffusion distance, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, R.B. (1980). Properties and distributions of the fiber types in the locomotory muscles of mammals. In Comparative Physiology: Primitive Mammals. K. Schmidt-Neilsen and C.R. Taylor, eds. Cambridge:Cambridge University Press, pp. 243–254.

    Google Scholar 

  • Armstrong, R.B. and M.H. Laughlin (1983). Blood flows within and among rat muscles as a function of time during high speed treadmill exercise. J. Physiol. 344:189–208.

    PubMed  CAS  Google Scholar 

  • Armstrong, R.B., M.D. Delp, E.F. Goljan and M.H. Laughlin (1987). Distribution of blood flow in muscles of miniature swine during exercise. J. Appl. Physiol. In Press.

    Google Scholar 

  • Armstrong, R.B., P. Marum, C.W. Saubert IV, H.W. Seeherman and C.R. Taylor (1977). Muscle fiber activity as a function of speed and gait. J. Appl. Physiol. 43:672–677.

    PubMed  CAS  Google Scholar 

  • Armstrong, R.B., C.W. Saubert, W.L. Sembrowich, R.E. Shepherd and P.D. Gollnick (1974). Glycogen depletion in rat skeletal muscle fibers at different intensities and durations of exercise. Pflugers Arch. 352:243–256.

    Article  PubMed  CAS  Google Scholar 

  • Bevegard, B.J. and J.T. Shepherd (1966). Reaction in man of resistance and capacity vessels in forearm and hand to leg exercise. J. Appl. Physiol. 21:123–132.

    Google Scholar 

  • Blair, D.A., W.E. Gloves and I.C. Roddie (1961). Vasomotor response in the human arm during leg exercise. Cir. Res. 9:264–274.

    Google Scholar 

  • Burke, R.E. (1981). Motor units: Anatomy, physiology and functional organization. In Handbook of Physiology, The Nervous System, Sect. 1, Bethesda, MD:American Physiological Society, pp. 345–422.

    Google Scholar 

  • Burke, R.E. and V.R. Edgerton (1975). Motor unit properties and selecive involvement in movement. Exercise Sport Sci. Rev. 3:31–81.

    Article  CAS  Google Scholar 

  • Clausen, J.P. (1976). Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. Prog. Cardiovas. Diseases 18:359–395.

    Google Scholar 

  • Collates, T.C., V.R. Edgerton, J.L. Smith, and B.R. Botterman (1977). Contractile properties and fiber type compositions of flexors and extensors of elbow joint in cat: Implications for motor control. J. Neurophysiol. 40:1292–1300.

    Google Scholar 

  • Crone, C. (1963). The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol. Scand. 58:292–305.

    Article  PubMed  CAS  Google Scholar 

  • Damon, D.H. and B.R. Duling (1984). Distribution of capillary blood flow in the microcirculation of the hamster: An in vivo study using epifluor- escent microscopy. Microvas. Res. 27:81–95.

    Article  CAS  Google Scholar 

  • Duling, B.R. and B. Klitzman (1980). Local control of microvascular function: Role in tissue oxygen supply. Ann. Rev. Physiol. 42:373–382.

    Article  CAS  Google Scholar 

  • Folkow, B., P. Gaskell and B.A. Waaler (1970). Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiol. Scand. 80:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B. and H.D. Halicka (1968). A comparison between red and white muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise. Microvas. Res. 1:1–14.

    Article  Google Scholar 

  • Gorczynski, R.J., B. Klitzman and B.R. Duling (1978). Interrelations between contracting striated muscle and precapillary microvessels. Am. J. Physiol. 235:H494-H504.

    PubMed  CAS  Google Scholar 

  • Granger, H.J., A.H. Goodman and D.N. Granger (1976). Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Cir. Res. 38:379–385.

    CAS  Google Scholar 

  • Gray, S.D. (1971). Responsiveness of the terminal vascular bed in fast and slow skeletal muscle to adrenergic stimulation. Angiologica 8:285- 296.

    PubMed  CAS  Google Scholar 

  • Gray, S.D., E. Carlsson and N.C. Staub (1967). Site of increased vascular resistance during isometric muscle contraction. Am. J. Physiol. 213:683–689.

    PubMed  CAS  Google Scholar 

  • Gruner, J.A. and J. Altman (1980). Swimming in the rat: Analysis of locomotor performance in comparison to stepping. Exp. Brain Res. 40:374–382.

    PubMed  CAS  Google Scholar 

  • Henneman, E. and L.M. Mendell (1981). Functional organization of moto neuron pool and its inputs. In Handbook of Physiology. Sec. 1, Vol. II. Bethesda, MD, American Physiological Society, pp. 423–507.

    Google Scholar 

  • Hilton, S.M., M.G. Jefferies and G. Vrbova (1970). Functional specializations of the vascular bed of soleus. J. Physiol. 206:545–562.

    Google Scholar 

  • Hilton, S.M., O. Hudlicka and J.M. Marshall (1978). Possible mediators of functional hyperemia in skeletal muscle. J. Physiol. 282:131–147.

    PubMed  CAS  Google Scholar 

  • Honig, C.R., C.L. Odoroff and J.L. Frierson (1982). Active and passive capillary control in red muscle at rest and in exercise. Am. J. Physiol. 243:H196-H206.

    PubMed  CAS  Google Scholar 

  • Hudlicka, O. (1973). Muscle Blood Flow; Its Relation to Muscle Metabolism and Function. Amsterdam: Swets and Zeitlinger.

    Google Scholar 

  • Kirkebor A. and A. Wisnes (1982). Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch. Acta Physiol. Scand. 114:551–556.

    Article  Google Scholar 

  • Kjellmer, I,. I. Lindbjerg, I. Prerovsky and H. Tonnesen (1967). The relation between blood flow in an isolated muscle measured with the 135 Xe clearance and a direct recording technique. Acta Physiol. Scand. 69:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Klitzman, B., D.N. Damon, R.J. Gorczynski and B.R. Duling (1982). Augmented tissue oxygen supply during striated muscle contraction in the hamster: Relative contributions of capillary recruitment, functional dilation and reduced tissue PO2. Cir. Res. 51:711–721.

    CAS  Google Scholar 

  • Laughlin, M.H. and R.B. Armstrong (1982). Muscular blood flow distribution patterns as a function of running speed in rats. Am. J. Physiol. 243:H296-H306.

    PubMed  CAS  Google Scholar 

  • Laughlin, M.H. and R.B. Armstrong (1983). Rat muscle blood flows as a function of time during prolonged slow treadmill exercise. Am. J. Physiol. 244:H814-H824.

    PubMed  CAS  Google Scholar 

  • Laughlin, M.H. and R.B. Armstrong (1985). Muscle blood flow during locomo- tory exercise. Exercise Sport Sci. Revs. 13:95–136.

    CAS  Google Scholar 

  • Laughlin, M.H. and R.B. Armstrong (1986). The effects of dipyridamole on the distribution of muscle blood flow during treadmill exercise in miniature swine. Fed. Proc. 45:1152.

    Google Scholar 

  • Laughlin, M.H. and R.B. Armstrong (1987). Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J. Appl. Physiol. 62:in press.

    Google Scholar 

  • Laughlin, M.H., S.J. Mohrman and R.B. Armstrong (1984). Muscular blood flow distribution patterns in the hindlimb of swimming rats. Am. J. Physiol. 246:H398-H403.

    PubMed  CAS  Google Scholar 

  • Mackie, B.G. and R.L. Terjung (1983). Blood flow to different skeletal muscle fiber types during contraction. Am. J. Physiol. 245:H265-H275.

    PubMed  CAS  Google Scholar 

  • Mellander, S. (1981). Differentiation on fiber composition, circulation and metabolism in limb muscles of dog, cat and man. In Vasodilation. P.M. Vanhoutte and I. Lenses, eds. New York:Raven Press, pp. 243–254.

    Google Scholar 

  • Mia, J.V., V.R. Edgerton and R.J. Barnard (1970). Capillarity of red, white and intermediate muscle fibers in trained and untrained guinea pigs. Experientia 26:1222–1223.

    Article  Google Scholar 

  • Paradise, N.F., C.R. Swayze, D.H. Shin and I. J. Fox (1971). Perfusion heterogeneity in skeletal muscle using tritiated water. Am. J. Physiol. 220:1107–1115.

    PubMed  CAS  Google Scholar 

  • Petrofsky, J.S. and D.M. Hendershot (1984). The interrelationship between blood pressure, intramuscular pressure, and isometric endurance in fast and slow twitch skeletal muscle in the cat. Eur. J. Appl. Physiol. 53:106–111.

    Article  CAS  Google Scholar 

  • Pendergast, D.R., J.A. Krasney, A. Ellis, B. McDonald, C. Marconi and P. Cerretelli (1985). Cardiac output and muscle blood flow in exercising dogs. Respiration Physiol. 61:317–326.

    Article  CAS  Google Scholar 

  • Peter, J.v., R.J. Barnard, V.R. Edgerton, C.A. Gillespie and K.E. Stemel (1972). Metabolic profiles of three types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11:2627–2633.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J., D.R. Pendergast, C. Marconi, M. Meyer, N. Heisler and P. Cerretelli (1985). Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J. Appl. Physiol. 58:2068–2074.

    PubMed  CAS  Google Scholar 

  • Pollack, A.A. and E.H. Wood (1949). Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J. Apl. Physiol. 1:649–662.

    CAS  Google Scholar 

  • Renkin, E.M. (1959). Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1205–1210.

    PubMed  CAS  Google Scholar 

  • Renkin, E.M. (1984). Control of microcirculation and blood-tissue exchange. Chapter 14, In Handbook of Physiology, Sec. 2, Cardiovascular System. Vol. IV, Microcirculation, Part 2, pp. 627–687.

    Google Scholar 

  • Rowell, L.B. (1974). Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 54:75–159.

    PubMed  CAS  Google Scholar 

  • Rowell/ L.B. (1986). Human Circulation; Regulation During Physical Stress. Oxford Univ. Press., New York, NY, pp. 1–327.

    Google Scholar 

  • Rowell, L.B., B. Saltin, B. Kiens and N.J. Christensen (1987). Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am. J. Physiol. 251:H1038-H1044.

    Google Scholar 

  • Saltin, B. and P.D. Gollnick (1983). Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology, Skeletal Muscle. Bethesda, MD:Am. Physiological Society, pp. 555–631.

    Google Scholar 

  • Sarelius, I.H. (1986). Cell flow path influences transit time through striated muscle capillaries. Am. J. Physiol. 250:H899-H907.

    PubMed  CAS  Google Scholar 

  • Shepherd, J.T. (1983). Circulation to skeletal muscle. In Handbook of Physiology, The Cardiovascular System, Sec. 2, Vol. III: Peripheral Circulation. Bethesda, MD:Am. Physiological Society.

    Google Scholar 

  • Sparks, H.V. and D. E. Mohrman (1977). Heterogeneity of flow as an explanation for the multi-exponential washout of inert gas from skeletal muscle. Microvas. Res. 13:181–184.

    Article  Google Scholar 

  • Sullivan, T.E. and R. B. Armstrong (1978). Rat locomotory muscle fiber activity during trotting and galloping. J. Appl. Physiol. 44:358–363.

    PubMed  CAS  Google Scholar 

  • Tyml, K. (1986). Capillary recruitment and heterogeneity of microvascular flow in skeletal muscle before and after contraction. Microvas. Res. 32:84–98.

    Article  CAS  Google Scholar 

  • Tyml, K. and A. C. Groom (1980). Regulation of blood flow in individual capillaries of resting skeletal muscle in frogs. Microvas. Res. 20:346–357.

    Article  CAS  Google Scholar 

  • Walmsley, B., J.A Hodgson and R.E. Burke (1978). Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol. 41:1103–1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Laughlin, M.H. (1988). Distribution of Skeletal Muscle Blood Flow During Locomotory Exercise. In: Gonzalez, N.C., Fedde, M.R. (eds) Oxygen Transfer from Atmosphere to Tissues. Advances in Experimental Medicine and Biology, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5481-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5481-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5483-3

  • Online ISBN: 978-1-4684-5481-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics