Skip to main content

The Relationship of Tissue Oxygenation to Cellular Bioenergetics

  • Conference paper
Oxygen Transfer from Atmosphere to Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 227))

Abstract

As primeval cellular organisms coalesced into complex entities, the diffusion distance from atmosphere to the energy producing organelles increased. This resulted in the evolution of an elaborate mass transport system with the dual purpose of carrying oxygen to the mitochondria and removing one of the biproducts of metabolism, carbon dioxide. This gas transport system has allowed man and other living creatures to thrive under a wide range of environmental conditions. However, the delivery of O2 to the tissues may be compromised when the limits of adaptation are reached. This may occur in high altitude, space travel, or when disease is present. Under those conditions the resulting tissue hypoxia results in a series of microvascular responses which help to preserve the flow of energy to the mechanisms responsible for maintaining the integrity of the cell membrane (Duling and Klitzman, 1980; Kontos 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annat, G., J.P. Viale, C. Percival, M. Froment and J. Motin (1986). Oxygen delivery and uptake in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 133:999–1001.

    PubMed  CAS  Google Scholar 

  • Bessman, S.P. and P.J. Geiger (1981). The transport of energy in muscle: The phosphorylcreatine shuttle. Science 211:448–452.

    Article  PubMed  CAS  Google Scholar 

  • Cain, S.M. (1977). Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J. Appl. Physiol. 42:228–234.

    PubMed  CAS  Google Scholar 

  • Chance, B. and G. Hollunger (1963). Inhibition of electron and energy transfer in mitochondria: IV. Inhibition of energy-linked diphos- phopyridine nucleotide reduction by uncoupling agents. J. Biol. Biochem. 238:445–458.

    CAS  Google Scholar 

  • Chance, B. (1982). Oxygen transport and oxygen reduction? In:Electron Transport and Oxygen Utilization.Ed. C. Ho, Elsevier, North Holland, p. 255–266.

    Google Scholar 

  • Chance, B., J.S. Leigh, B.J. Clark, J. Maris, J. Kent, S. Nioka and D. Smith (1985a). Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. Proc. Natl. Acad. Sci. USA 82:8384–8388.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., J.S. Leigh and S. Nioka (1985b). Microheterogenity — The “Achilles heel” of NMR spectroscopy and imaging: Some calculations for brain ischemia and muscle exercise. News Metab. Res. 2:26–31.

    Google Scholar 

  • Danek, S.J., J. P. Lynch, J.G. Weg and D.R. Dantzker (1980). The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 122:387–395.

    PubMed  CAS  Google Scholar 

  • Dantzker, D.R. (1987). Interpretation of data in the hypoxic patient. In:New Horizons. Oxygen Transport and Utilization.Vol. 2. Bryan-Brown, C.W. and Ayres, S.M. (Eds). Fullerton, CA. Society of Critical Care Medicine, pp. 93–108.

    Google Scholar 

  • Desjardins, C. and B.R. Duling (1987). Microvessel hematocrit: measurement and implications for capillary oxygen transport. Am. J. Physiol. 252:H494-H503.

    Google Scholar 

  • Dulingr B.R. and B. Klitzman (1980). Local control in microvascular function: Role in tissue oxygen supply. Ann. Rev. Physiol. 42:373–382.

    Article  Google Scholar 

  • Federspiel, W.J. and I.H. Sarelius (1984). An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall. Microvas. Res. 27:273–285.

    Article  CAS  Google Scholar 

  • Gadian, D.G. (1982). Nuclear Magnetic Resonance and its Application to Living Systems. Oxford, Oxford University Press.

    Google Scholar 

  • Gayeski, T.E. and C.R. Honig (1986). O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. Am. J. Physiol. 251:H789-H799.

    PubMed  CAS  Google Scholar 

  • Gevers, W. (1977). Generation of protons by metabolic processes in heart cells. J. Mol. Cell. Card. 9:867–874.

    Article  CAS  Google Scholar 

  • Grisham, M.B. and J.M. McCord (1986). Chemistry and cytotoxicity of reactive oxygen metabolites. In:Physiology, of Oxygen Radicals, Eds. A.E. Taylor, S. Matalon and P. Ward, Bethesda, American Physiological Society, pp 1–18.

    Google Scholar 

  • Gutierrez, G. (1986). The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis. Resp. Physiol. 63:79–96.

    Article  CAS  Google Scholar 

  • Gutierrez, G. and J.M. Andry. (1987). NMR measurements - Clinical Applications. Crit. Care Med. (in press)

    Google Scholar 

  • Gutierrez, G. and R.J. Pohil (1986). Oxygen consumption is linearly related to O2 supply in critically ill patients. J. Crit. Care 1; 45–53.

    Article  Google Scholar 

  • Gutierrez, G., R.J. Pohil, R. Strong and P. Narayana. Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia. J. Appl. Physiol, (in press)

    Google Scholar 

  • Gutierrez, G., A.R. Warley and D.R. Dantzker (1986). Oxygen delivery and utilization in hypothermic dogs. J. Appl. Physiol. 60:751–757.

    PubMed  CAS  Google Scholar 

  • Gyulai L., Z. Roth, J.S. Leigh, Jr. and B. Chance (1985). Bioenergetic studies of mitochondrial oxidative phosphorylation using 31-Phosphorus NMR. J. Biol. Chem. 260:3947–3954.

    PubMed  CAS  Google Scholar 

  • Hochachka, P.W. (1985). Fuel and pathways as designed systems for support of muscle work. J. Exp. Biol. 115:149–164.

    PubMed  CAS  Google Scholar 

  • Hochachka, P.W. (1986). Defense strategies against hypoxia and hypothermia. Science 231:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Honig, C.R., C.L. Odoroff, and J.L. Frierson (1980). Capillary recruitment in exercise: rate, extent, uniformity, and relation to blood flow. Am. J. Physiol. 238:H31-H42.

    PubMed  CAS  Google Scholar 

  • Honig, C.R. and C.L. Odoroff (1984). Calculated dispersion of capillary transit times: Significance for oxygen exchange. Am. J. PHysiol. 27:H199-H208.

    Google Scholar 

  • Idstrom, J.P., V.H. Subramanian, B. Chance, T. Schersten and A.C. Bylund Fellenius (1985). Oxygen dependence of energy metabolism in contracting and recovering rat skeletal muscle. Am. J. Physiol. 248:H40-H48.

    PubMed  CAS  Google Scholar 

  • Kariman, K. and S.R. Burns (1985). Regulation of tissue oxygen extraction is disturbed in adult respiratory distress syndrome. Am. Rev. Respir. Dis. 132:109–114.

    PubMed  CAS  Google Scholar 

  • Klocke, R.A. (1986). Oxygen transfer from the red cell to the mitochondrion. In: New Horizons. Oxygen Transport and Utilization.Vol. 2. Eds. C.W. Bryan-Brown and S.M. Ayres, Fullerton, CA. Society of Critical Care Medicine, pp. 239–270.

    Google Scholar 

  • Kontos, A.K. (1986). Regulation of the cerebral microcirculation in hypoxia and ischemia. In: New Horizons. Oxygen Transport and Utilization. Vol. 2. Eds. C.W. Bryan-Brown and S.M. Ayres, Fullerton, CA Society of Critical Care Medicine, pp 311–316.

    Google Scholar 

  • Kreuzer, F. and S.M. Cain (1985). Regulation of peripheral vasculature and tissue oxygenation in health and disease. Crit. Care Clin. 1:453–470.

    PubMed  CAS  Google Scholar 

  • Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (London) 52:409–415.

    CAS  Google Scholar 

  • Kushmerick, M.J. and R.A. Meyer (1985). Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance. Am. J. Physiol. 248:C542- C549.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. (1982). Principles of Biochemistry. New York, Worth.

    Google Scholar 

  • Ljunggren, B.r K. Norberg and B.K. Siesjo (1974). Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Mohsenifar, Z., P. Goldbach, D.P. Tashkin, and D.J. Campisi (1983). Relationship between oxygen delivery and oxygen consumption in the adult respiratory distress syndrome. Chest 84:266–271.

    Article  Google Scholar 

  • Moon, R.G. and J.H. Richards (1973). Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 248:7276–7278.

    PubMed  CAS  Google Scholar 

  • Myers, R.E. (1979). A unitary theory of causation of anoxic and hypoxic brain pathology. In: Advances in Neurology, Vol. 26, Eds. S. Fahn, J.N. Davis and L.P. Rowland. Raven Press, New York, 195–213.

    Google Scholar 

  • Nishimura, N. (1984). Oxygen conformers in critically ill patients. Resuscitation 12:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Nuutinen, E.M., K. Nishiki, M. Erecinska and D.F. Wilson (1982). Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow. Am. J. Physiol. 243:H159-H169.

    PubMed  CAS  Google Scholar 

  • Nuutinen, E.M., D. Nelson, D.F. Wilson and M. Erecinska (1983). Regulation of coronary blood flow; effects of 2,4-dinitrophenol and theophylline. Am. J. Physiol. 244:H396-H405.

    PubMed  CAS  Google Scholar 

  • Pepe, P.E., and C.H. Culver (1985). Independently measured oxygen consumption during reduction of oxygen delivery by positive end-expiratory pressure. Am. Rev. Respir. Dis. 132:788–792.

    PubMed  CAS  Google Scholar 

  • Pittman, R.N. (1986). Determinants of oxygen exchange in the microcirculation In:New Horizons. Oxygen Transport and Utilization.Vol. 2. Eds. C.W. Bryan-Brown, S.M. Ayres, Fullerton, CA. Society of Critical Care Medicine, pp 271–292.

    Google Scholar 

  • Pittman, R.N. (1987). Oxygen delivery and transport in the microcirculation. In:Microvascular Perfusion and Transport in Health and Disease. Ed. D. McDonagh Karger, Basel, 60–79.

    Google Scholar 

  • Radda, O.K. (1986). The use of NMR spectroscopy for the understanding of disease. Science 233:640–645.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona, S., L. Mela and B.K. Siesjo. (1979). Recovery of brain mitochondrial function in the rat after complete and incomplete ischemia. Stroke 10:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Sapega, A.A., R.B. Heppenstall and B. Chance (1985). Optimizing tourniquet application and release times in extremity surgery. J. Bone Joint Surg. 67-A:303–314.

    Google Scholar 

  • Shibutani, K., T. Komatsu, K. Kubal, V. Sanchala, V. Kumar and D.V. Bizarri (1983). Critical level of oxygen delivery in anesthetized man. Crit. Care Med. 11:640–643.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, G., A. Walter, M. Thiel and B.J. Ebeling (1984). Local regulation of blood flow. Adv. Exp. Med. Biol. 169:515–540.

    PubMed  CAS  Google Scholar 

  • Siesjo, B.K. (1984). Cerebral circulation and metabolism. J. Neurosurg. 60:883–908.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, A.K. (1983). Oxygen uptake and release by red cells through plasma layer and capillary wall. In: Oxygen Transport to the Tissues. Fourth Edition. Eds. H. Bicher and D. Bruley New York, Plenum, 525–537.

    Google Scholar 

  • Stainsby, W.N. and A.B. Otis. (1964). Blood flow, oxygen tension and oxygen transport in skeletal muscle. Am. J. Physiol. 206:858–866.

    PubMed  CAS  Google Scholar 

  • Sugano, T., N. Oshino and B. Chance (1974). Mitochondrial functions under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism. Biochim. Biophys. Acta 347:340–358.

    Article  CAS  Google Scholar 

  • Taegtmeyer, H. (1986). Myocardial metabolism. In:Positron Emission Tomography: Principles and Applications for the Brain and Heart. M. Phelps, J. Mazziotta and H. Schelbert eds. Raven Press, New York, 149- 195.

    Google Scholar 

  • Vandegriff, K.D. and J.S. Olson (1984). Morphological and physiological factors affecting oxygen uptake and release by red blood cells. J. Biol. Chem. 259:12619–12627.

    PubMed  CAS  Google Scholar 

  • Warley, A.R. and G. Gutierrez. Chronic administration of sodium cyanate in dogs decreases the oxygen extraction ratio. J. Appl. Physiol, (in press)

    Google Scholar 

  • Wilson, D.F., M. Erecinska, C. Drown and I.A. Silver (1977). Effect of oxygen tension on cellular bioenergetics. Am. J. Physiol. 233:C135- C140.

    PubMed  CAS  Google Scholar 

  • Wilson, D.P., M. Erecinska, C. Drown and I.A. Silver (1979). The oxygen dependency of cellular energy metabolism. Biochem. Biophys. 195:485- 493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Gutierrez, G. (1988). The Relationship of Tissue Oxygenation to Cellular Bioenergetics. In: Gonzalez, N.C., Fedde, M.R. (eds) Oxygen Transfer from Atmosphere to Tissues. Advances in Experimental Medicine and Biology, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5481-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5481-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5483-3

  • Online ISBN: 978-1-4684-5481-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics