Skip to main content

Novel Tunnelling Structures: Physics and Device Implications

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 170))

Abstract

The new crystal growth techniques (molecular beam epitaxy and metal-organic chemical vapour deposition) allow sufficient control over the layer thicknesses and integrity that resonant tunnelling phenomena can be explored with some precision. Beyond the double barrier diode and the uniform superlattice are a number of novel tunnelling structures, the physics of two of which, the superlattice tunnel diode and the short graded-parameter superlattice, will be discussed in some detail. A short discussion will also be given of the potential role of tunnelling in both two and three terminal devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R A Davies, M J Kelly and T M Kerr, “Tunnelling between two strongly coupled superlattices”, Phys. Rev. Lett. 55, 1114–6 (1985)

    Article  ADS  Google Scholar 

  2. R A Davies, M J Kelly and T M Kerr, “Room Temperature Oscillation in a Superlattice Structure”, Electronics Lett, 22, 121–3 (1986)

    Article  Google Scholar 

  3. R A Davies, M J Kelly and T M Kerr “Tailoring the I-V Characteristics of a Superlattice Tunnel diode”, Electronics Letts. 23, 90–2, (1987)

    Article  Google Scholar 

  4. N R Couch, M J Kelly, T M Kerr, E Britton and W M Stobbs “Evidence for the Role of Indirect Gap Tunnelling through Thin AlAs Barriers”, Semiconductor Science and Technology 2, 244–7 (1987)

    Google Scholar 

  5. N R Couch, D G Parker, M J Kelly and T M Kerr “Low Dark-current GaAs/AlAs Graded-Parameter Superlattice PIN Photodetector”, Electronics Letts. 22, 636–7, (1986)

    Article  ADS  Google Scholar 

  6. D G Parker, N R Couch, M J Kelly and T M Kerr “On the High-Speed Photoresponse of a Quasi-Graded Band-Gap Superlattice p-i-n Photodiode”, Appl. Phys. Letts, 49, 939–41, (1986)

    Article  ADS  Google Scholar 

  7. T Kakagawa, N J Kawai, K Ohta and N Kawashima “New Negative-Resistance Device by a CHIRP Superlattice”, Electronics Letts 19, 822–3 (1983)

    Article  ADS  Google Scholar 

  8. T Nakagawa, H Imamoto, T Sakamoto, T Kojima, K Ohta and N J Kawai, “Observation of Negative Differential Resistance in CHIRP Superlattices”, Electronics Letts 21, 882–4 (1985)

    Article  Google Scholar 

  9. N Yokoyama, K Imamura, S Muto, S Hiyamizu and H Nishi “A New Functional Resonant Tunnelling Hot Electron Transistor (RHET)” Jap. J. Appl. Phys., Part 2, 24 L853–4 (1985)

    Google Scholar 

  10. N Yokoyama and K Imamura “Flip-Flop Circuit Using a Resonant-Tunnelling Hot Electron Transistor (RHET)”, Electronics Lett, 22, 1228–9 (1986)

    Google Scholar 

  11. F Capasso, S Sen, A C Gossard, A L Hutchinson and J H English, “Quantum-Well Resonant Tunnelling Bipolar Transistor Operating at Room Temperature”, IEEE Electron Devices Lett. EDL 7, 573–6, (1986)

    Article  Google Scholar 

  12. J F Palmier, C Minot, J L Lievin, F Alexandre, J C Hamand, J Dangla, C Dubon-Chevallier and D Ankri, “Observation of Bloch Conduction Perpendicular to Interfaces on a Superlattice Bipolar Transistor”, Appl. Phys. Lett 49, 1260–2, (1986)

    Article  ADS  Google Scholar 

  13. See accompanying chapter M J Kelly, A P Long and P H Beton, “Hot Electron Spectroscopy and Transistor Design”,

    Google Scholar 

  14. F Capasso, K Mohammed and A Y Cho “Resonant Tunnelling through Double Barriers, Perpendicular Quantum Transport Phenomen in Superlattices, and their Device Applications”, IEEE Quantum Electronics QE-22, 1853–69, (1986)

    Google Scholar 

  15. B Movaghar “Theory of High-field Transport in Semiconductor Superlattice structures”, Semiconductor Science and Technology 2 185–206 (1987)

    Google Scholar 

  16. L Esaki and L L Chang, “New Transport Phenomena in a Semiconductor Superlattice”, Phys. Rev. Lett., 33. 495–7 (1974)

    Article  ADS  Google Scholar 

  17. M Saitoh “Stark Ladders in Solids” J. Phys. C5, 914–26 (1972).

    Google Scholar 

  18. R T Phillips, N R Couch and M J Kelly “Electroluminesence from a Short Asymmetric GaAs/AlAs Superlattice”, submitted for Semiconductor Science and Technology

    Google Scholar 

  19. S R Andrews and R T Harley “Optically Detected Tunneling Between Quantum Wells”, Proceedings of the SPIE meeting in “Quantum wells and Superlattices’, Marriott Bay, Florida, March 1987.

    Google Scholar 

  20. R A Davies, M J Kelly, T M Kerr, C J Hetherington and C J Humphreys, “Geometrical and Electronic Structure of a Semiconductor Superlattice”, Nature 317, 418–9, (1985)

    Article  ADS  Google Scholar 

  21. M J Kelly, R A Davies, A P Long, N R Couch, P H Beton and T M Kerr, “Vertical Transport in Multilayer Semiconductor Structures”, Superlattices and Microstructures 2, 313–7, (1986)

    Article  ADS  Google Scholar 

  22. R A Davies, D J Newson, T G Powell, M J Kelly and H W Myron, “Magnetotransport in Semiconductor superlattice”, Semiconductor Science and Technolopgy 2, 61–4 (1987)

    Article  ADS  Google Scholar 

  23. J C Maan “Combined Electric and Magnetic Field Effects in Semiconductor Heterostructures”, in “Two-Dimensional Systems, Heterostructures and Superlattices”, editors G. Bauer, F Kucher and H Heinrich (Springer-Verlag 1984), p l83–9

    Google Scholar 

  24. This is also a factor in the double barrier structures, e. g. M. Tsuchiya, H Sakaki and J Yoshino “Room Temperature Observation of Differential Negative Resistance in an AlAs/GaAs/AlAs Resonant Tunnelling diode”, Jap. J. Applied Phys. 24, L466–8, (1985)

    Google Scholar 

  25. C Sotomayer-Torres, private communication and to be published

    Google Scholar 

  26. Courtesy of E Britton, W M Stobbs, C J Hetherington and C J Humphries

    Google Scholar 

  27. E R Brown, T C H G Sollner, W D Goodhue and C D Parker, “Millimeter-band Oscillations Based in Resonant Tunnelling in a Double-barrier Diode at Room Temperature”, Appl. Phys. Lett, 50, 83–5 (1987)

    Article  ADS  Google Scholar 

  28. c. f. S M Sze “Physics of Semiconductor Devices”, 2nd Electron ( Wiley, New York, 1981 )

    Google Scholar 

  29. A P Long, P H Beton and M J Kelly, “Hot Electron Transport in Heavily Doped GaAs”, Semiconductor Science and Technology 1, 63–70, (1986)

    Article  ADS  Google Scholar 

  30. N A Cade, S H Parmer, N R Couch and M J Kelly “Indirect Gap Resonant Tunneling in GaAs/AlAs” (to be published)

    Google Scholar 

  31. N R Couch, D G Parker, M J Kelly and T M Kerr “Direct and Indirect-Gap Tunnelling in a Graded-Parameter GaAs/AlAs Superlattice” Proceedings of the 18th International Conference on the Physics of Semiconductors, (Stockholm 1986), editor O. Engstrom, (World Science 1987) p 247–50 (Pressure measurements courtesy of P Klipstein)

    Google Scholar 

  32. F Singleton, R J Nicholas, N J Pulsford, N R Couch, and M J Kelly “Quasi Bound states in an asymmetric GaAs/AlAs superlattice”, to be published.

    Google Scholar 

  33. F Capasso, H M Cox, A L Hutchinson, N Olsson and S G Hummel “Pseudo-quaternany GalnAsP Semiconductors: A New Gao.47Ino.53As/InP Graded Gap Superlattice and its Application to Avalanche Photodiodes”, Appl. Phys. Lett. 45, 1193–5, (1984)

    Google Scholar 

  34. T Weil and B Vinter “Calculation of Carrier Transport in Pseudo-Quaternary Alloys”, Surf. Sci., 174, 505–8 (1986)

    Google Scholar 

  35. T Nakagawa, H Imamoto, T Kojima and K Ohta “Observation of Resonant Tunnelling in AlGaAs/GaAs Triple Barrier Diodes”, Appl. Phys. Lett. 49, 73–5 (1986)

    Google Scholar 

  36. M A Reed, J W Lee and H. L. Tsai., “Resonant Tunnelling Through in Double GaAs/AlAs Superlattice Barrier, Single Quantum Well Heterostructure”, Appl. Phys. Lett., 49, 158–60 (1986)

    Google Scholar 

  37. S Muto, “Transport Characteristic in Heterostructure Devices” in the Proceedings of “High Speed Electronics” (Copenhagen), editors B Kallback and H Beneking (Springer-Verlag 1986 )

    Google Scholar 

  38. R A Davies, “Simulations of the Current-Voltage Characteristics of Semiconductor Tunnel Structure”, GEC Journal of Research, 1987, to appear

    Google Scholar 

  39. A R Bonnefoi, T C McGill, R D Burnham and G B Anderson., “Observation of Resonant Tunnelling through GaAs Quantum Well States Confined by AlAs X-point Barriers”, Appl. Phys. Lett 50, 344–6, (1987), and see reference 4 therein.

    Google Scholar 

  40. J M Gering, D A Crim, D G Morgan, P D Coleman, W Kopp and H Morkoc “A Small-Signal Equivalent-Circuit Model for GaAs-AlxGai-xAs Resonant Tunneling Heterostructures and Microwave Frequencies”, J. Appl. Phys, 61, 271–6 (1987)

    Article  ADS  Google Scholar 

  41. S Luryi “Hot-Electron-Injection and Resonant-Tunneling Heterojunction Devices” to appear in “Heterojunctions: A Modern View of Band Discontinuities and Device Applications” editors F Capasso and G Margaritondo (North Holland 1987, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, M.J., Davies, R.A., Couch, N.R., Movaghar, B., Kerr, T.M. (1987). Novel Tunnelling Structures: Physics and Device Implications. In: Mendez, E.E., von Klitzing, K. (eds) Physics and Applications of Quantum Wells and Superlattices. NATO ASI Series, vol 170. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5478-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5478-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5480-2

  • Online ISBN: 978-1-4684-5478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics