Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 170))

Abstract

In recent years there has been an intense research effort on semiconductor heterojunctions. This field is an excellent example of how basic science and technology interact and influence one another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley, U.S. Patent 2 569, 347 (1951).

    Google Scholar 

  2. H. Kroemer, RCA Rev. 18, 332 (1957).

    Google Scholar 

  3. For recent reviews on band-gap engineering see F. Capasso, in Gallium Arsenide Technology, D. K. Ferry, Ed. (Sams, Indianapolis, 1985), chap 8; F. Capasso, in Picosecond Electronics and Optoelectronics, G. Mourou, D. M. Bloom, C. H. Lee, Eds. ( Springer-Verlag, Berlin, 1985 ), p. 112.

    Google Scholar 

  4. H. Kroemer, Proc. IEEE 51, 1782 (1963).

    Article  Google Scholar 

  5. Zh. I. Alferov etal., Sov. Phys. Semicond. 4, 1573 (1971) [translated from Fiz. Tekh. Pouprovodn. 4, 1826 (1970)]; I. Hayashi, M. B. Panish, P. W. Foy, S. Sumski, Appl. Phys. Lett. 17, 109 (1970).

    Google Scholar 

  6. A. Y. Cho and J. R. Arthur, Progress in Solid-State Chemistry, J. O. McCaldin and G. Somorjai, Eds. (Pergamon, New York, 1975), vol. 10, p. 157; M. B. Panish, Science 208, 916 (1980).

    Google Scholar 

  7. N. Holonyak, R. M. Kolbas, R. D. Dupuis, P. D. Dapkus, IEEE J. Quantum Electron. QE-16, 170 (1980).

    Google Scholar 

  8. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  9. H. M. Manasevit, Appl. Phys. Lett. 12, 156 (1969); R. D. Dupuis, Science 226, 623 (1984).

    Google Scholar 

  10. G. Dohler, J. Vac. Sci. Technol. B1, 278 (1983).

    Article  Google Scholar 

  11. F. Capasso, S. Luryi, W. T. Tsang, C. G. Bethea, B. F. Levine, Phys. Rev. Lett. 51, 2318 (1983).

    Article  ADS  Google Scholar 

  12. R. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).

    Article  ADS  Google Scholar 

  13. H. L. Stormer, R. Dingle, A. C. Gossard, W. Wiegmann, M. D. Sturge, Solid State Commun. 29, 705 (1979); R. Dingle, A. C. Gossard, H. L. Stormer, U.S. Patent 4 194, 935 (1980); T. Mimura, S. Hiyamizu, T. Fuji, K. Nanbu, Jpn. J. Appl. Phys. 19, L125 (1980).

    Google Scholar 

  14. For strained layer superlattices in III-V materials, see G. C. Osbourn, J. Vac. Sci. Technol. 21, 469 (1982); for Ge-Si strained layer superlattices, see J. C. Bean, Science 230, 127 (1985).

    Google Scholar 

  15. J. M. Woodall, Science 208, 908 (1980).

    Article  ADS  Google Scholar 

  16. V. Narayanamurti, Phys. Today 37 (no. 6 ), 24 (1984).

    Google Scholar 

  17. F. Capasso, W. T. Tsang, G. F. Williams, IEEE Trans. Electron Devices ED-30, 381 (1983).

    Google Scholar 

  18. R. Chin, N. Holonyak, G. E. Stillman, J. Y. Tang, K. Hess, Electron. Lett. 40, 38 (1982).

    Google Scholar 

  19. F. Capasso, W. T. Tsang, A. L. Hutchinson, G. F. Williams, Appl. Phys. Lett. 40, 38 (1982).

    Article  ADS  Google Scholar 

  20. F. Capasso, IEEE Trans. Electron Dev. ED-29, 1388 (1982); F. Capasso, R. A. Logan and W. T. Tsang, Electron. Lett. 18, 760 (1982).

    Google Scholar 

  21. E. Gatti and P. Rehak, Nucl. Inst rum. Methods 225, 608 (1984).

    Article  Google Scholar 

  22. S. L. Chuang and K. Hess, J. Appl. Phys. 59, 2885 (1986).

    Article  ADS  Google Scholar 

  23. F. Capasso etal., Appl. Phys. Lett. 48, 1294 (1986). Near single-carrier type multiplication has been achieved using this scheme in a graded well structure. See J. Allam, F. Capasso, K. Alavi and A. Y. Cho, IEEE Electron. Dev. Lett. EDL-8, 4 (1987).

    Google Scholar 

  24. F. Capasso, W. T. Tsang, C. G. Bethea, A. L. Hutchinson, B. F. Levine, ibid. 42, 93 (1983).

    Google Scholar 

  25. J. R. Hayes, F. Capasso, A. C. Gossard, R. J. Malik, W. Wiegmann, Electron. Lett. 19, 818 (1983); R. J. Malik etal., Appl. Phys. Lett. 46, 600 (1985).

    Google Scholar 

  26. G. J. Sullivan, P. M. Asbeck, M. F. Chang, D. L. Miller, K. C. Wang, paper III A-6, Technical Digest of the 44th Annual Device Research Conference, Amherst, MA, 23 to 25 June 1986.

    Google Scholar 

  27. L. L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974). For a recent review on resonant tunneling in heterostructures, see F. Capasso, K. Mohammed, A. Y. Cho, IEEE J. Quantum Electron. QE-22, 1853 (1986).

    Google Scholar 

  28. T. C. L. G. Sollner, P. E. Tannewald, D. D. Peck, W. D. Goodhue, Appl. Phys. Lett. 45, 1319 (1984).

    Article  ADS  Google Scholar 

  29. F. Capasso and R. A. Kiehl, J. Appl. Phys. 58, 1366 (1985). A unipolar resonant tunneling transistor with a quantum well in the emitter was demonstrated shortly hereafter by N. Yokoyama, K. Inamura, S. Muto, S. Hiyamizu, and H. Nishi [Jpn. J. Appl. Phys. 24, L853 (1985)].

    Google Scholar 

  30. R. C. Miller, D. A. Kleinmann, A. C. Gossard, O. Munteanu, Phys. Rev. B 29, 3740 (1984).

    Article  ADS  Google Scholar 

  31. F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson, J. H. English, IEEE Electron. Dev. Lett. EDL7, 573 (1986).

    Google Scholar 

  32. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, A. L. Hutchinson, Appl. Phys. Lett. 47, 420 (1985).

    Article  ADS  Google Scholar 

  33. Phys, Rev. Lett. 55, 1152 (1985).

    Google Scholar 

  34. A. Rose, Concepts in Photoconductivity and Allied Problems ( Wiley, New York, 1963 ).

    Google Scholar 

  35. F. Capasso, K. Mohammed, A. Y. Cho, Appl. Phys. Lett. 48, 478 (1986).

    Article  ADS  Google Scholar 

  36. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971) [translated from Fiz. Tech. Pouprovodn. 5, 797 (1971)].

    Google Scholar 

  37. F. Capasso and M. C. Teich, Phys. Rev. Lett. 57, 1417 (1986).

    Article  ADS  Google Scholar 

  38. C. K. Sinclair, Journal de Physique, Colloque C2, Suppl. to No 2, 46, 669 (1985).

    Google Scholar 

  39. R. C. Miller, D. A. Kleinmann and A. C. Gossard, Inst. Phys. Conf. Ser. 43, 1043 (1979).

    Google Scholar 

  40. R. Houdre’ et al., Phys. Rev. Lett. 55, 734 (1985).

    Article  ADS  Google Scholar 

  41. F. Capasso, A. Y. Cho, K. Mohammed, P. W. Foy, Appi. Phys. Lett. 46, 664 (1985); J. Vac. Sci. Technol. B3, 1245 (1985).

    Google Scholar 

  42. D. W. Niles, G. Margaritondo, P. Perfetti, C. Quaresima, M. Capozi, Appi. Phys. Lett. 47, 1092 (1985); P. Perfetti etal., Phys. Rev. Lett. 57, 2065 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Capasso, F. (1987). Band-Gap Engineering for New Photonic and Electronic Devices. In: Mendez, E.E., von Klitzing, K. (eds) Physics and Applications of Quantum Wells and Superlattices. NATO ASI Series, vol 170. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5478-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5478-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5480-2

  • Online ISBN: 978-1-4684-5478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics