Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 170))

  • 303 Accesses

Abstract

In 1969, research on quantum structures was initiated with a proposal of an “engineered” semiconductor superlattice by Esaki and Tsu (1) (2). In anticipation of advancement in epitaxy, we envisioned two types of superlattices with alternating ultrathin layers: doping and compositional, as shown at the top and bottom of Figure 1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, “Superlattice and negative conductivity in semiconductors,” IBM Research Note RC-2418 (1969).

    Google Scholar 

  2. L. Esaki and R.Tsu, “uperlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. 14: 61 (1970).

    Article  Google Scholar 

  3. D. Bohm,“ Theory:” (Prentice Hall, Englewood Cliffs, N.J. 1951 ), p. 283.

    Google Scholar 

  4. L. Esaki,“ journey into tunneling,” Les Prix Nobel en 1973, Imprimerie Royale, P.A. Norstedt S Soner, Stockholm 1974, p. 66.

    Google Scholar 

  5. L. Esaki, L.L. Chang, and R. Tsu, “A one-dimensional ‘superlattice’ in semiconductors” Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, 1970 (Keigaku Publishing Co.,Tokyo, Japan), p. 551.

    Google Scholar 

  6. A.E. Blakeslee and C.F. Aliotta, “Man-made superlattice crystals,” IBM J. Res. Develop. 14: 686 (1970).

    Google Scholar 

  7. L. Esaki, L.L. Chang, W.E. Howard, and V.L. Rideout, “Transport properties of a GaAs-GaAlAs superlattice,” Proceedings of the 11th International Conference on the Physics of Semiconductors, Warsaw, Poland, 1972, edited by the Polish Academy of Sciences (PWN-Polish Scientific Publishers, Warsaw, Poland ), p. 431.

    Google Scholar 

  8. R. Tsu and L. Esaki, “Nonlinear optical response of conduction electrons in a superlattice” Appl. Phys. Lett. 19: 246 (1971).

    Google Scholar 

  9. L. Esaki, “Semiconductor Superlattices and Quantum Wells” Proceedings of the 17th International Conference on the Physics of Semiconductors, San Francisco, August, 1984, edited by J.D. Chadi and W.A. Harrison (Springer-Verlag, New York, 1985), p.473; IEEE J. Quantum Electron., QE-22: 1611 (1986).

    Google Scholar 

  10. A. C. Gossard, “Growth of Microstructures by Molecular Beam Epitaxy” IEEE J. Quantum Electron., QE-22: 1649 (1986)

    Google Scholar 

  11. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22: 562 (1973).

    Article  ADS  Google Scholar 

  12. L.L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semi-conductor double barriers” Appl. Phys. Lett. 24: 593 (1974).

    Google Scholar 

  13. L. Esaki and L.L. Chang, “New transport phenomenon in a semi-conductor ‘superlattice’” Phys. Rev. Lett. 33: 495 (1974).

    Google Scholar 

  14. F. Capasso, K. Mohammed and A. Y. Cho, “Resonant tunneling through double barriers” IEEE J. Quantum Electron., QE-22: 1853 (1986).

    Google Scholar 

  15. E.E. Mendez, W.I. Wang, B. Ricco, and L. Esaki, “Resonant Tunneling of holes in AlAS-GaAs-AlAS heterostructures” Appl. Phys. Lett. 47: 415 (1985).

    Google Scholar 

  16. R. Dingle, A.C. Gossard, and W. Wiegmann, “Direct observation of superlattice formation in a semiconductor heterostructure” Phys Rev. Lett. 34: 1327 (1975).

    Google Scholar 

  17. J.P. van der Ziel, R. Dingle, R.C. Miller,W. Wiegmann, and W.A. Nordland Jr., “Laser oscillation from quantum states in very thin GaAs - Al0 2Gao es multilayer structures” Appl. Phys. Lett. 26: 463 (1975).

    Google Scholar 

  18. Y. Arakawa and A. Yariv, “Quantum well lasers” IEEE J. Quantum Electron., QE-22: 1887 (1986)

    Google Scholar 

  19. R. Tsu, L.L. Chang, G.A. Sai-Halasz, and L. Esaki, “Effects of quantum states on the photocurrent in a superlattice” Phys. Rev. Lett. 34: 1509 (1975).

    Article  ADS  Google Scholar 

  20. B. Deveaud, J. Shah, T. C. Damen, B. Lambert and A. Regreny, “Bloch transport of electrons and holes in superlattice mini- bands: direct measurement by subpicosecond luminescence spectroscopy” Phys. Rev. Lett. 58: 2582 (1987).

    Google Scholar 

  21. E.E. Mendez, G Bastard, L.L. Chang, and L. Esaki, “Effect of an electric field on the luminescence of GaAs quantum wells” Phys. Rev. B 26: 7101 (1982).

    Article  ADS  Google Scholar 

  22. L. Vina, R. T. Collins, E. E. Mendez and W. I. Wang, “Excitonic coupling in GaAs/GaAlAs quantum wells in an electric field” Phys. Rev. Lett. 58: 832 (1987).

    Google Scholar 

  23. D.S. Chemla, T.C. Damen, D.A.B. Miller, A.C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett. 42: 864 (1983).

    Google Scholar 

  24. D.A.B. Miller, J.S. Weiner, and D.S. Chemla, “Electricfield dependence of linear optical properties in quantum well structures” IEEE J. Quantum Electron., QE-22: 1816 (1987).

    Google Scholar 

  25. P. Manuel, G.A. Sai-Halasz, L.L. Chang, Chin-An Chang, and L. Esaki, “Resonant Raman scattering in a semiconductor superlattice,” Phys. Rev. Lett. 37: 1701 (1976).

    Google Scholar 

  26. G. Abstreiter, R. Merlin, and A. Pinczuk, “Inelastic light scattering by electronic excitations in semiconductor heterostructures” IEEE J. Quantum Electron., QE-22: 1771 (1987).

    Google Scholar 

  27. C. Colvard, R. Merlin, and M.V. Klein, and A.C. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45: 298 (1980).

    Google Scholar 

  28. M.V. Klein, “Phonons in semiconductor superlattices” IEEE J. Quantum Electron., QE-22: 1760 (1987)

    Google Scholar 

  29. R. Dingle, H.L. Stormer, A.C. Gossard, W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett. 33: 665 (1978).

    Article  ADS  Google Scholar 

  30. M. Abe, T. Mimura, K. Nishiuchi, A. Shibatomi and M. Kobayashi, “Recent advances in ultra-high-speed HEMT technology” IEEE J. Quantum Electron., QE-22: 1870 (1986)

    Google Scholar 

  31. L. L. Chang, H. Sakaki, C. A. Chang, and L. Esaki, “Shubnikov-de Haas oscillations in a semiconductor superlattice” Phys. Rev. Lett. 38: 1489 (1977).

    Google Scholar 

  32. K. von Klitzing, G. Doreda, and M. Pepper, “New method for high- accuracy determination of the fine-structure constant based on quantized hall resistance,” Phys. Rev. Lett. 45: 494 (1980).

    Google Scholar 

  33. D.C. Tsui and A.C. Gossard, “Resistance standard using quantization of the Hall resistance of GaAs - AlxGa-1-xAs heterostructures Appl. Phys. Lett. 38: 550 (1981).

    Google Scholar 

  34. G.A. Sai-Halasz, R. Tsu,and L.Esaki, “A new semiconductor superlattice,” App. Phys. Lett. 30: 651 (1977); G.A. Sai-Halasz, L. Esaki, and W.A. Harrison, ”InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition,” Phys. Rev. B 18: 2812 (1978).

    Google Scholar 

  35. L.L. Chang, N.J. Kawai, Q.A. Sai-Halasz, R. Ludeke, and L. Esaki, “Observation of semiconductor-semimetal transition in InAs-GaSb superlattices” Appl. Phys. Lett. 35: 939, (1979).

    Google Scholar 

  36. Y. Guldner, J.P. Vieren, P. Voisin, M. Voos, L.L. Chang, and L. Esaki, “Cyclotron resonance and far-infrared magneto-absorption experiments on semimetallic InAs-GaSb superlattices,” Phys. Rev. Lett. 45: 1719, (1980).

    Google Scholar 

  37. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, “Self-consistent calculations in InAs-GaSb heterojunctions,” J. Vac. Sci. Technol. 21: 531 (1982).

    Article  ADS  Google Scholar 

  38. H. Munekata, E.E. Mendez, Y. Iye, and L. Esaki, “Densities and mobilities of coexisting electrons and holes in MBE grown GaSb-InAs-GaSb quantum well,” Surf. Sci. 174: 449 (1986)

    Article  ADS  Google Scholar 

  39. E.E. Mendez, L. Esaki, and L.L. Chang, “Quantum Hall effect in a two-dimensional electron hole gas,”Phys. Rev. Lett. 55: 2216 (1985).

    Article  ADS  Google Scholar 

  40. T. P. Smith and H. Munekata, private communication.

    Google Scholar 

  41. G.H. Dohler, H. Kunzel, D. Olego, K. Ploog, P. Ruden, H.J. Stolz, and G. Abstreiter, “Observation of tunable band gap and two- dimensional subbands in a novel GaAs superlattice,” Phys. Rev. Lett. 47: 864 (1981).

    Article  ADS  Google Scholar 

  42. J.H. van der Merwe, “Crystal interfaces,” J. Appl. Phys. 34: 117 (1963).

    Article  ADS  MATH  Google Scholar 

  43. G.C. Osbourn, R.M. Biefeld and P.L. Gourley, “A GaAsxP1-x/GaP strained-layer superlattice,” Appl. Phys. Lett. 41: 172 (1982).

    Google Scholar 

  44. E. Kasper, H. J. Herzog and H. Kibbel, “A one-dimensional SiGe superlattice grown by UHV epitaxy,” Appl. Phys. 8: 199 (1975).

    Google Scholar 

  45. H. M. Manasevit, I. S. Gergis, and A. B. Jones, “Electron mobility enhancement in epitaxial multilayer Si - Si-1-x Gex alloy films on (100) Si,” Appl. Phys. Lett. 41: 464 (1982).

    Google Scholar 

  46. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, and J.D. Robinson, “GexSi-1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A2, 436 (1984).

    Google Scholar 

  47. A.V. Nurmikko, R.L. Gunshor and L.A. Kolodziejski, “Optical Properties of CdTe/CdMnTe multiple quantum wells” IEEE J. Quantum Electron. QE-22: 1785 (1986)

    Google Scholar 

  48. A.C. Gossard, P.M. Petroff, W. Weigmann, R. Dingle, and S. Savage, “Epitaxial structures with alternate-atomic-layer composition modulation,” Appl. Phys. Lett. 29: 323 (1976).

    Article  ADS  Google Scholar 

  49. H. Temkin, G.J. Dolan, M.B. Parish, and S.N.G. Chu, “Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes” Appl. Phys. Lett. 50: 413 (1987).

    Google Scholar 

  50. H. Sakaki, “Scattering suppression and high-mobility effect of size- quantized electrons in ultrafine semiconductor wire structures” Jpn. J. Appl. Phys. 19: L735 (1980).

    Google Scholar 

  51. Y-C Chang, L. L. Chang and L. Esaki, “A new one-dimensional quantum well structure” Appl. Phys. Lett. 47: 1324 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Esaki, L. (1987). A Perspective in Quantum-Structure Development. In: Mendez, E.E., von Klitzing, K. (eds) Physics and Applications of Quantum Wells and Superlattices. NATO ASI Series, vol 170. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5478-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5478-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5480-2

  • Online ISBN: 978-1-4684-5478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics