Skip to main content

Nuclear Magnetic Resonance (NMR) Imaging of Perfusion

  • Conference paper
The Biophysics of Organ Cryopreservation

Part of the book series: NATO ASI Series ((NSSA,volume 147))

  • 290 Accesses

Abstract

Nuclear magnetic resonance imaging has the potential to assess the blood flow in the microcirculation of preserved organs prior to implantation. Nuclear magnetic resonance (NMR) is inherently sensitive to motion of the nuclear spins through regions having different magnetic field strengths. NMR imaging relies on magnetic field gradients for spatial location information. Consequently, the flow of blood in the microcirculation may be observed with NMR imaging. Although this is a relatively new application of NMR imaging, the most successful approaches are based on adaptations of techniques of diffusion measurement by NMR. This chapter reviews three topics: 1) NMR imaging, 2) the analogy of the motion of blood in the microcirculation to molecular diffusion, and 3) measurement of the diffusion coefficient with NMR. Then, the work of Le Bihan on NMR imaging of perfusion is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Mansfield and P. G. Morris, “NMR Imaging in Biomedicine,” Academic Press, New York (1982).

    Google Scholar 

  2. K. F. King and P. R. Moran, A Unified Description of NMR Imaging, Data-Collection Strategies, and Reconstruction, Medical Physics 11:1 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. R. D. DeVoe and P. C. Maloney, Principles of Cell Homeostasis, in: “Medical Physiology”, V. B. Mountcastle, ed., Mosby, St. Louis, Chapter 1 (1980).

    Google Scholar 

  4. M. P. Wiedeman, R. F. Tuma, and H. N. Mayrovitz, “An Introduction to Microcirculation,” Academic Press, New York, especially Chapters 2 and 3, (1981).

    Google Scholar 

  5. E. L. Hahn, Spin Echoes, Physical Review 80:580 (1950).

    Article  Google Scholar 

  6. J. R. Singer, NMR Diffusion and Flow Measurements and an Introduction to Spin Phase Graphing, J. Phys. E.: Sci. Instrum. 11:281 (1978).

    Article  CAS  Google Scholar 

  7. R. P. Feynman, R. B. Leighton, and Matthew Sands, “The Feynman Lectures on Physics,” Addison-Wesley, Reading, Volume 1, Chapter 43, (1963).

    Google Scholar 

  8. H. V. Carr and E. M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments, Physical Review 94:630 (1954).

    Article  CAS  Google Scholar 

  9. K. Gersonde, personal communication.

    Google Scholar 

  10. K. Gersonde, T. Tolxdorff, and L. Felsberg, Identification and Characterization of Tissues by T2-Selective Whole-Body Proton NMR Imaging, Magnetic Resonance in Medicine 2:390 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. E. O. Stejskal and J. E. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, Journal of Chemical Physics 42:288 (1965).

    Article  CAS  Google Scholar 

  12. G. E. Wesbey, M. E. Moseley, and R. L. Ehman, Translational Molecular Self-Diffusion in Magnetic Resonance Imaging: I. Effects on Observed Spin-Spin Relaxation, Investigative Radiology 19:484 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. G. E. Wesbey, M. E. Moseley, and R. L. Ehman, Translational Molecular Self-Diffusion in Magnetic Resonance Imaging: II. Measurement of the Self-Diffusion Coefficient, Investigative Radiology 19:491 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. D. Le Bihan, E. Breton, M. Gueron, B. Roger, and M. Laval-Jeantet, Separation of Perfusion and Diffusion in Intra-Voxel Incoherent Motion (IVIM) MR Imaging, Fifth Annual Meeting, Society of Magnetic Resonance in Medicine (1986).

    Google Scholar 

  15. D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, MR Imaging of Intravoxel Incoherent Motions: Applications to Diffusion and Perfusion in Neurological Disorders, Radiology 161:401 (1986).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Wendt, R.E. (1987). Nuclear Magnetic Resonance (NMR) Imaging of Perfusion. In: Pegg, D.E., Karow, A.M. (eds) The Biophysics of Organ Cryopreservation. NATO ASI Series, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5469-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5469-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5471-0

  • Online ISBN: 978-1-4684-5469-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics