Skip to main content

Non-Equilibrium Formation of Ice in Aqueous Solutions: Efficiency of Polyalcohol Solutions for Vitrification

  • Conference paper
The Biophysics of Organ Cryopreservation

Part of the book series: NATO ASI Series ((NSSA,volume 147))

Abstract

Many individual cells can now be preserved without damage in liquid nitrogen. For this, they are cooled in the presence of a cryoprotectant at an optimum cooling rate where they become surrounded by ice crystals. The cells lose water due to the resulting osmotic pressure. Their shrinkage is sufficient to avoid intracellular ice crystallization but insufficient to be damaging by itself (1). Unfortunately, attempts to preserve the major organs, such as the heart, kidney or liver of man and mammals have almost always failed until now. One of the reasons is that the interior of the organ is cooled more slowly than the exterior: the cooling rate cannot be optimum everywhere in the organ. It may be constituted of different kinds of cells requiring different cooling rates. Furthermore, as noted by Fahy (2), extracellular ice is itself damaging for the structure of the organ and can break the capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ashwood-Smith and J. Farrant, Low temperature preservation in medicine and biology. Pitman Medical, Tunbridge Wells, Kent (1980).

    Google Scholar 

  2. G.M. Fahy, Vitrification: a new approach to organ cryopreservation, In: Transplantation: approaches to graft rejection, pp 305–335, Ed. H.T. Meryman, Alan R. Liss, Inc., New York (1986).

    Google Scholar 

  3. P. Boutron and A. Kaufmann, Stability of the amorphous state in the system water-glycerol-dimethylsulfoxide, Cryobiology 15:93 (1978).

    Article  PubMed  CAS  Google Scholar 

  4. P. Boutron and A. Kaufmann, Stability of the amorphous state in the system water-glycerol-ethylene glycol, Cryobiology 16:83 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. P. Boutron, A. Kaufmann, and N. Van Dang, Maximum in the stability of the amorphous state in the system water-glycerol-ethanol. Cryobiology 16:372 (1979).

    Article  PubMed  CAS  Google Scholar 

  6. P. Boutron and A. Kaufmann, Stability of the amorphous state in the system water-1,2-propanediol. Cryobiology 16:557 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. P. Boutron, D. Delage and B. Roustit, Stability of the amorphous state in the system water -1,2-propanediol -1,3-propanediol. J. Chim. Phys. 77:567 (1980).

    CAS  Google Scholar 

  8. P. Boutron, D. Delage, B. Roustit and C. Korber, Ternary systems with 1,2-propanediol: a new gain in the stability of the amorphous state in the system water-l,2-propanediol-1-propanol. Cryobiology 19:550 (1982).

    Article  CAS  Google Scholar 

  9. P. Mehl and P. Boutron, Stability of the amorphous state in the system water-l,2-propanediol-methanol. Cryo-Letters 6:343 (1985).

    CAS  Google Scholar 

  10. P. Boutron, P. Mehl, A. Kaufmann, and P. Angibaud, Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol. Cryobiology 23:453 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. P. Mehl and P. Boutron, Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. II. Ternary systems with water, 1,2-propanediol or 1,3-butanediol or 2,3-butanediol. Cryobiology 24:355 (1987).

    Article  CAS  Google Scholar 

  12. G.M. Fahy, D.R. MacFarlane, C.A. Angell and H.T. Meryman, Vitrification as an approach to cryopreservation. Cryobiology 21:407 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. G.M. Fahy, T. Takahashi and H.T. Meryman, Practical aspects of ice-free cryopreservation, In: Future developments in blood banking, C. Th. Smit Sibinga et al ed., Martinus Nijhoff Publ., Boston, Dordrecht, Lancaster (1986).

    Google Scholar 

  14. C.A. Angell, E.J. Sare, J. Donnella and D.R. MacFarlane, Homogeneous nucleation and glass transition temperatures in solutions of Li salts in D2O and H2O. Doubly unstable glass regions. J. Phys. Chem. 85:1461 (1981).

    Article  CAS  Google Scholar 

  15. D.R. MacFarlane, C.A. Angell, and G.M. Fahy. Homogeneous nucleation and glass formation in cryoprotective systems at high pressures. Cryo-Letters 2:353 (1981).

    CAS  Google Scholar 

  16. P. Boutron and F. Arnaud, Comparison of the cryoprotection of red blood cells by 1,2-propanediol and glycerol. Cryobiology 21:348 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. L.G. Dowell and A.P. Rinfret, Low temperature forms of ice as studied by X-ray diffraction. Nature 188:1144 (1960).

    Article  CAS  Google Scholar 

  18. L.B. Lane, Freezing points of glycerol and its aqueous solutions. Ind. Eng. Chem. 17:924 (1925).

    Article  CAS  Google Scholar 

  19. R.H. Doremus, Glass Science, Wiley, New York and London (1973).

    Google Scholar 

  20. D.H. Rasmussen and A.P. MacKenzie, Phase diagram for the system water-dimethylsulfoxide. Nature (London) 220:1315 (1968).

    Article  CAS  Google Scholar 

  21. W.L. Howard, Crystalline propylene glycol. J. Chem. Eng. Data 14:129 (1969).

    Article  CAS  Google Scholar 

  22. P. Boutron. More accurate determination of the quantity of ice crystallized at low cooling rates in the glycerol and 1,2-propanediol aqueous solutions: comparison with equilibrium. Cryobiology 21:183 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. P. Boutron, Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solutions. Cryobiology 23:88 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. B. Luyet and D. Rasmussen, Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica 10:167 (1968).

    Google Scholar 

  25. F. Thom and G. Matthes, Remarks on ice formation in binary-aqueous solutions of ethylene glycol and dimethylsulfoxide. I. ethylene glycol. Cryo-Letters 7:311 (1986).

    CAS  Google Scholar 

  26. C. Korber, M.W. Scheiwe, P. Boutron and G. Rau, The influence of hydroxethyl starch on ice formation in aqueous solutions. Cryobiology 19:478 (1982).

    Article  Google Scholar 

  27. H. Stephen and T. Stephen. In: Solubilities of inorganic and organic compounds, Vol. 1, part 1, p. 374, Pergamon, Elmsford, New York (1963).

    Google Scholar 

  28. P. Boutron and P. Mehl, Non equilibrium ice crystallization in aqueous solutions: comparison with theory, case of solutions of polyalcohols with four carbons, ability to form glasses, compounds favouring cubic ice. VIIth Symposium on the Physics and Chemistry of Ice, Grenoble, 1986, J. de Physique, 48:C1–441 (1987).

    Article  Google Scholar 

  29. P. Mehl and P. Boutron, Survival of erythrocytes after cooling into liquid nitrogen: relation with glass-forming tendency on cooling and the transition from cubic into hexagonal ice on rewarming. VIIth Symposium on the Physics and Chemistry of ice, Grenoble, 1986, J. de Physique, 48:Cl-449 (1987).

    Google Scholar 

  30. P. Mehl and P. Boutron, Cryoprotection of red blood cells by 1,3-butanediol and 2,3-butanediol. Cryobiology. To be Published.

    Google Scholar 

  31. D.R. MacFarlane, Devitrification in glass-forming aqueous solutions. Cryobiology 23:230 (1986).

    Article  CAS  Google Scholar 

  32. D.R. MacFarlane, M. Fragoulis, B. Uhlherr, and S.D. Jay, Devitrification in aqueous solutions at high heating rates. Cryo-Letters 7:73 (1986).

    CAS  Google Scholar 

  33. D.R. MacFarlane and M. Fragoulis, Theory of devitrification in multicomponent glass-forming systems under diffusion control. Phys. Chem. Glasses 27:228 (1986).

    CAS  Google Scholar 

  34. P. Boutron, Transition from cubic into hexagonal ice in cells and freezing damage on rewarming. Colloque Europeen de Cryobiologie, Lyon, 1984, Innovation et Technologie en Biologie et Medicine Vol. 5 Special no. 1:169 (1984).

    Google Scholar 

  35. W.F. Rall, D.S. Reid and J. Farrant, Innocuous biological freezing during warming. Nature (London) 286:511 (1980).

    Article  CAS  Google Scholar 

  36. T. Nei, Growth of ice crystals in frozen specimens. J. Microsc. 99:227 (1973).

    Article  Google Scholar 

  37. T. Nei, Freezing injury to erythrocytes. Cryobiology 13:278 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. W.F. Rall and C. Polge, Effects of warming rate on mouse embryos frozen and thawed in glycerol. J. Reprod. Fert. 70:285 (1984).

    Article  CAS  Google Scholar 

  39. H.T. Meryman, Cryobiology, Academic Pres, London and New York (1966).

    Google Scholar 

  40. M. Forsyth and D.R. MacFarlane, Recrystallization revisited. Cryo-Letters 7:367 (1986).

    CAS  Google Scholar 

  41. P. Mazur, The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251 (1977).

    Article  PubMed  CAS  Google Scholar 

  42. T. Takahashi, On the role of cubic structure in ice nucleation. J. Crystal Growth 59:441 (1982).

    Article  CAS  Google Scholar 

  43. J.P. Renard and C.J. Babinet, High survival of mouse embryos after rapid freezing and thawing inside plastic straws with 1,2-propanediol as cryoprotectant. J. Exper. Zool. 230:443 (1984).

    Article  CAS  Google Scholar 

  44. J.P. Renard, Bui-Xuan-Nguyen, and V. Gamier, Two-step freezing of two-cell rabbit embryos after partial dehydration at room temperature. J. Reprod. Fert. 71:573 (1984).

    Article  CAS  Google Scholar 

  45. B. Lassalle, J. Testart and J.P. Renard, Human embryos features that influence the success of cryopreservation with the use of 1,2-propanediol. Fertility and Sterility 44:645 (1985).

    PubMed  CAS  Google Scholar 

  46. J. Testart, B. Lassalle, J. Belaisch-Allart, R. Forman and R. Frydman, Cryopreservation does not affect future of human fertilised eggs. The Lancet 569 (1986). See also J. Testart, B. Lassale, J. Belaisch-Allart, R. Forman, A. Hazout, M. Volante and R. Frydman, Human embryo viability related to freezing and thawing procedures. Ann. J. Obstet. Gynecol. To be published. And Dr. Escoffier-Lambiotte, Premieres naissances en France a partir d’embryons congeles. Le Monde April 11th, p. 31 (1986).

    Google Scholar 

  47. W.F. Rall, Cryopreservation of mouse embryos by vitrification. Cryobiology 23:548 (1986).

    Article  Google Scholar 

  48. W.F. Rall and G.M. Fahy, Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 313:573 (1985).

    Article  PubMed  CAS  Google Scholar 

  49. P. Mehl and P. Boutron, Erythrocytes in 1,2-butanediol: “Toxicity” and cryoprotection. Cryo-Letters 7:379 (1986).

    CAS  Google Scholar 

  50. P. Mehl and P. Boutron, Ternary systems with 65% w/w water, 1,2-propanediol and 1,2-butanediol: glass-forming tendency and stability of the amorphous state. Cryo-Letters 8:64 (1987).

    CAS  Google Scholar 

  51. N.A. Halasz and G.M. Collins, Studies in cryoprotection II: propylene glycol and glycerol. Cryobiology 21:144 (1984).

    Article  PubMed  CAS  Google Scholar 

  52. B. Scheffen, P. Van der Zwalmen and A. Massip, A simple and efficient procedure for preservation of mouse embryos by vitrification. Cryo-Letters 7:260 (1986).

    Google Scholar 

  53. A. Massip, P. Van der Zwalmen, B. Scheffen and F. Ectors, Pregnancies following transfer of cattle embryos preserved by vitrification. Cryo-Letters 7:270 (1986).

    Google Scholar 

  54. J.W. Knowlton, N.C. Schieltz, and D. Macmillan. Physical chemical properties of the 2,3-butanediols. J. Am. Chem. Soc. 68:208 (1946).

    Article  CAS  Google Scholar 

  55. G.M. Fahy, D.I. Levy, and S.E. Ali, Some emerging principles underlying the physical properties, biological actions and utility of vitrification solutions. Cryobiology 24:196 (1987).

    Article  PubMed  CAS  Google Scholar 

References

  1. L.G. Dowell and A.P. Rinfret, Low temperature forms of ice as studied by X-ray diffraction, Nature (London) 188:1144 (1960).

    Article  CAS  Google Scholar 

  2. H. Fernandez-Moran, Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann. N.Y. Acad. Sci., 85:689 (1960).

    Article  PubMed  CAS  Google Scholar 

  3. H.T. Meryman, X-ray analysis of rapidly frozen gelatin gels. Biodynamica 8:69 (1958).

    CAS  Google Scholar 

  4. T. Takahashi, On the role of cubic structure in ice nucleation, J. Crystal Growth 59:441 (1982).

    Article  CAS  Google Scholar 

  5. W.F. Rall, D.S. Reid and J. Farrant, Innocuous biological freezing during warming, Nature 286:511 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. W.F. Rall, D.S. Reid and C. Polge, Analysis of slow warming injury of mouse embryos by cryomicroscopical and physical-chemical methods, Cryobiology 21:106 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. B. Luyet, J. Tanner and G. Rapatz, X-ray diffraction study of the structure of rapidly frozen gelatin solutions, Biodynamica 9:21 (1962).

    PubMed  CAS  Google Scholar 

  8. M. Forsyth and D.R. MacFarlane, Recrystallization revisited. Cryo-Letters 7:367 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Boutron, P. (1987). Non-Equilibrium Formation of Ice in Aqueous Solutions: Efficiency of Polyalcohol Solutions for Vitrification. In: Pegg, D.E., Karow, A.M. (eds) The Biophysics of Organ Cryopreservation. NATO ASI Series, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5469-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5469-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5471-0

  • Online ISBN: 978-1-4684-5469-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics