Genes Encoding Drug-Metabolizing Enzymes: Possible Role in Human Disease

  • Daniel W. Nebert
Part of the Basic Life Sciences book series (BLSC, volume 43)


There are several important questions to address on the subject of genetic versus environmental contributions to individual risk of cancer and toxicity, (i) How large is the genetic contribution and how large is the environmental contribution? (ii) How great is the genetic variability between individuals? (iii) How can these differences be explained on a molecular basis? (iv) Is it possible to detect these differences in a routine assay? (v) Is it financially feasible to screen populations to determine risk? (vi) Who will want to know such information and why?


Congenital Adrenal Hyperplasia Bronchogenic Carcinoma Aberrant Splice Restriction Fragment Length Polymorphism Pattern Aryl Hydrocarbon Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayesh, R., Idle, J. R., Ritchie, J. C., Crothers, M. J., and Hetzel, M. R., 1984, Metabolic oxidation phenotypes as markers for susceptibility to lung cancer, Nature, 312:169.PubMedCrossRefGoogle Scholar
  2. Barbeau, A., Cloutier, T., Roy, M., Plasse, L., Paris, S., and Poirier, J., 1985, Ecogenetics of Parkinson’s disease: 4-Hydroxylation of debrisoquine, Lancet, 1:1213.CrossRefGoogle Scholar
  3. Black, S. D., and Coon, M. J., 1987, P-450 cytochromes: Structure and function, Advanc. Enzymol. Relat. Areas Mol. Biol., 60:35.Google Scholar
  4. Boobis, A., Caldwell, J., DeMatteis, F., and Davies, D., 1985, “Microsomes and Drug Oxidations,” 428 p, Taylor and Francis Ltd., London.Google Scholar
  5. Cartwright, R. A., 1984, Epidemiological studies on N-acetylation and C-center ring oxidation in neoplasia, in: “Genetic Variability in Responses to Chemical Exposure,” G. S. Omenn, and H. V. Gelboin, eds., p. 359, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  6. Cartwright, R. A., Glashan, R. W., Rogers, H. J., Ahmad, R. A., Hall, D. B., Higgins, E., and Kahn, M. A., 1982, The role of N-acetyl-transferase phenotypes in bladder carcinogenesis: A pharmacogenetics epidemiological approach to bladder cancer, Lancet, 2:842.PubMedCrossRefGoogle Scholar
  7. Chung, B.-C., Matteson, K. J., Voutilainen, R., Mohandas, T. K., and Miller, W. L., 1986, Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta, Proc. Natl. Acad. Sci. U.S.A., 83:8962.PubMedCrossRefGoogle Scholar
  8. Chung, B.-C., Picado-Leonard, J., Haniu, M., Bienkowski, M., Hall, P. F., Shively, J. E., and Miller, W. L., 1987, Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): Cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues, Proc. Natl. Acad. Sci. U.S.A., 84:407.PubMedCrossRefGoogle Scholar
  9. Conney, A. H., 1982, Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture, Cancer Res., 42:4875.PubMedGoogle Scholar
  10. Eichelbaum, M., 1984, Polymorphic drug oxidation in humans, Fed. Proc, 43:2298.Google Scholar
  11. Eisen, H. J., Hannah, R. R., Legraverend, C., Okey, A. B., and Nebert, D. W., 1983, The Ah receptor: Controlling factor in the induction of drug-metabolizing enzymes by certain chemical carcinogens and other environmental pollutants, in: “Biochemical Actions of Hormones,” G. Litwack, ed., p. 227, Academic Press, New York.Google Scholar
  12. Evans, D. A. P., Eze, L. C., and Whitley, E. J., 1983, The association of the slow acetylator phenotype with bladder cancer, J. Med. Genet., 20:330.PubMedCrossRefGoogle Scholar
  13. French, J. S., Guengerich, F. P., and Coon, M. J., 1980, Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system, J. Biol. Chem., 255:4112.PubMedGoogle Scholar
  14. Gonzalez, F. J., Jaiswal, A. K., and Nebert, D. W., 1986, P450 genes: Evolution, regulation and relationship to human cancer, in: “Cold Spring Harbor Symposia on Quantitative Biology: Molecular Biology of Homo sapiens,” Vol. 51, p. 879, Cold Spring Harbor Laboratory, New York.Google Scholar
  15. Gonzalez, F. J., Matsunaga, T., Nagata, K., Meyer, U., Nebert, D. W., Pastewka, J., Kozak, K., Gillette, J. R., Gelboin, H. V., and Hardwick, J. P., 1987a, Debrisoquine 4-hydroxylase: Characterization of a new P450 gene, subfamily, regulation, chromosomal mapping, and molecular analysis of the DA rat polymorphism, DNA, 6:149.CrossRefGoogle Scholar
  16. Gonzalez, F. J., Skoda, R. C., Kimura, S., McBride, O. W., Umeno, M., Zanger, U. M., Nebert, D. W., Gelboin, H. V., Hardwick, J. P., and Meyer, U. A., 1987b, Deficient metabolism of debrisoquine and other drugs is due to defective alleles of a human P450 gene, Science, in press.Google Scholar
  17. Gonzalez, F. J., Tukey, R. H., and Nebert, D. W., 1984, Structural gene products of the Ah locus. Transcriptional regulation of cytochrome P1–450 and P3–450 mRNA levels by 3-methylcholanthrene, Mol. Pharmacol., 26:117.PubMedGoogle Scholar
  18. Hannah, R. R., Nebert, D. W., and Eisen, H. J., 1981, Regulatory gene product of the Ah complex. Comparison of 2,3,7,8-tetrachlorodi-benzo-p-dioxin and 3-methylcholanthrene binding to several moieties in mouse liver cytosol, J. Biol. Chem., 256:4584.PubMedGoogle Scholar
  19. Haugen, D. A., Coon, M. J., and Nebert, D. W., 1976, Induction of multiple forms of mouse liver cytochrome P-450. Evidence for genetically controlled de novo protein synthesis in response to treatment with β-naphthoflavone or phénobarbital, J. Biol. Chem., 251:1 81 7.Google Scholar
  20. Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., and Fujii-Kuriyama, Y., 1986, Complete nucleotide sequence of two steroid 21-hydroxy-lase genes tandemly arranged in human chromosome: A pseudogene and a genuine gene, Proc. Natl. Acad. Sci. U.S.A., 83:2841.PubMedCrossRefGoogle Scholar
  21. Hong, L. H., McKinney, J. D., and Luster, M. I., 1987, Modulation of 2,3,7,8-tetrachlorodibenzo-£-dioxin (TCDD)-mediated myelotoxicity by thyroid hormones, Biochem. Pharmacol., 36:1361.PubMedCrossRefGoogle Scholar
  22. Idle, J. R., Mahgoub, A., Sloan, T. P., Smith, R. L., Mbanefo, C. O., and Bababunmi, E. A., 1981, Some observations on the oxidation phenotype status of Nigerian patients presenting with cancer, Cancer Lett., 11:331.PubMedCrossRefGoogle Scholar
  23. Idle, J. R., and Smith, R. L., 1979, Polymorphisms of oxidation at carbon centers of drugs and their clinical significance, Drug Metab. Rev., 9:301.PubMedCrossRefGoogle Scholar
  24. Jaiswal, A. K., Gonzalez, F. J., and Nebert, D. W., 1985, Human P 1– 450 gene sequence and correlation of mRNA with genetic differences in benzo[a]pyrene metabolism, Nucl. Acids Res., 13:4503.PubMedCrossRefGoogle Scholar
  25. Jaiswal, A. K., and Nebert, D. W., 1986, Two RFLPs associated with the human P1450 gene linked to the MPI locus on chromosome 15, Nucl. Acids Res., 14:4376.PubMedCrossRefGoogle Scholar
  26. Jaiswal, A. K., Nebert, D. W., and Gonzalez, F. J., 1986, Human P3450: cDNA and complete amino acid sequence, Nucl. Acids Res., 14:6773.PubMedCrossRefGoogle Scholar
  27. Jaiswal, A. K., Nebert, D. W., McBride, O. W., and Gonzalez, F. J., 1987, Human P3450: cDNA and complete protein sequence, repetitive sequences in the 3′ nontranslated region, and localization of gene to chromosome 15, J. Exp. Pathol., 3:1.PubMedGoogle Scholar
  28. Jerina, D. M., 1983, Metabolism of aromatic hydrocarbons by the cytochrome P-450 system and epoxide hydrolase, Drug Met. Disp., 11:1.Google Scholar
  29. Kalow, W., 1962, Human hereditary defects with altered drug response, in: “Pharmacogenetics: Heredity and the Response to Drugs,” W. Kalow, ed., p. 146, W. B. Saunders, Philadelphia.Google Scholar
  30. Kamataki, T., Maeda, K., Yamazoe, Y., Matsuda, N., Ishii, K., and Kato, R., 1983, A high-spin form of cytochrome P-450 highly purified from polychlorinated biphenyl-treated rats. Catalytic characterization and immunochemical quantitation in liver microsomes, Mol. Pharmacol., 24:146.PubMedGoogle Scholar
  31. Kellermann, G., Shaw, C. R., and Luyten-Kellermann, M., 1973, Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma, N. Eng. J. Med., 289:934.CrossRefGoogle Scholar
  32. Kouri, R. E., McKinney, C. E., Slomiany, D. J., Snodgrass, D. R., Wray, N. P., and McLemore, T. L., 1982, Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analyzed in cryopreserved lymphocytes, Cancer Res., 42:5030.PubMedGoogle Scholar
  33. Kouri, R. E., and Nebert, D. W., 1977, Genetic regulation of susceptibility to polycyclic hydrocarbon-induced tumors in the mouse, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds., p. 811, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  34. Kouri, R. E., Rude, T. H., Joglekar, R., Dansette, P. M., Jerina, D. M., Atlas, S. A., Owens, I. S., and Nebert, D. W., 1978, 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Cocarcinogen which enhances 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically “nonresponsive” at Ah locus, Cancer Res., 38:2777.Google Scholar
  35. Legraver end, C., Guenthner, T. M., and Nebert, D. W., 1984, Importance of the route of administration for genetic differences in benzo[a]pyrene-induced in utero toxicity and teratogenicity, Teratology, 29:35.CrossRefGoogle Scholar
  36. Legraverend, C., Harrison, D. E., Ruscetti, F. W., and Nebert, D. W., 1983, Bone marrow toxicity induced by oral benzo[a]pyrene: Protection resides at the level of the intestine and liver, Toxicol. Appl. Pharmacol., 70:390.PubMedCrossRefGoogle Scholar
  37. McKinney, J. D., Fawkes, J., Jordan, S., Chae, K., Oatley, S., Coleman, R. E., and Briner, W., 1985, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) as a potent and persistent thyroxine agonist: A mechanistic model for toxicity based on molecular reactivity, Environ. Health Perspect., 61:41.PubMedCrossRefGoogle Scholar
  38. Nebert, D. W., 1979, Multiple forms of inducible drug-metabolizing enzymes. A reasonable mechanism by which any organism can cope with adversity, Mol. Cell. Biochem., 27:27.PubMedCrossRefGoogle Scholar
  39. Nebert, D. W., 1981a, Genetic differences in susceptibility to chemically induced myelotoxicity and leukemia, Environ. Health Perspect., 39:11.PubMedCrossRefGoogle Scholar
  40. Nebert, D. W., 1981b, Possible clinical importance of genetic differences in drug metabolism, Brit. Med. J., 283:537.CrossRefGoogle Scholar
  41. Nebert, D. W., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, B., Levin, W., Phillips, I. R., and Waterman, M. R., 1987a, The P450 gene superfamily. Recommended nomenclature, DNA, 6:1.PubMedCrossRefGoogle Scholar
  42. Nebert, D. W., Eisen, H. J., and Hankinson, O., 1984, The Ah receptor: Binding specificity only for foreign chemicals?, Biochem. Pharmacol., 33:917.PubMedCrossRefGoogle Scholar
  43. Nebert, D. W., and Gonzalez, F. J., 1987, P450 genes. Structure, evolution and regulation, Annu. Rev. Biochem., 56:945.PubMedCrossRefGoogle Scholar
  44. Nebert, D. W., and Jaiswal, A. K., 1987, Human drug metabolism polymorphisms: Use of recombinant DNA techniques, Pharmacol. Ther., 33: in press.Google Scholar
  45. Nebert, D. W., Jaiswal, A. K., Meyer, U. A., and Gonzalez, F. J., 1987b, Human P450 genes: Evolution, regulation and possible role in carcinogenesis, Biochem. Soc. Transact., in press.Google Scholar
  46. Nebert, D. W., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Eisen, H. J., 1982, The Ah locus, a multigene family necessary for survival in a chemically adverse environment: Comparison with the immune system, Advanc. Genet., 21:1.CrossRefGoogle Scholar
  47. Negishi, M., Jensen, N. M., Garcia, G. S., and Nebert, D. W., 1981, Structural gene products of the murine Ah locus. Differences in ontogenesis, membrane location, and glucosamine incorporation between liver microsomal cytochromes P1–450 and P-448 induced by polycyclic aromatic compounds, Eur. J. Biochem., 115:585.PubMedCrossRefGoogle Scholar
  48. Niwa, A., Kumaki, K., Nebert, D. W., and Poland, A. P., 1975, Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the “responsive” homozygote and heterozygote at the Ah locus, Arch. Biochem. Biophys., 166:559.PubMedCrossRefGoogle Scholar
  49. Ortiz de Montellano, P. R., 1986, “Cytochrome P-450: Structure, Mechanism, and Biochemistry,” 539 p., Plenum Publishing, New York.Google Scholar
  50. Paigen, B., Gurtoo, H. L., Minowada, J., Houten, L., Vincent, R., Paigen, K., Parker, N. B., Ward, E., and Hayner, N. T., 1977, Questionable relation of aryl hydrocarbon hydroxylase to lung-cancer risk, N. Eng. J. Med., 297:346.CrossRefGoogle Scholar
  51. Pelkonen, O., and Nebert, D. W., 1982, Metabolism of polycyclic aromatic hydrocarbons: Etiologic role in carcinogenesis, Pharmacol. Rev., 34:189.PubMedGoogle Scholar
  52. Poland, A. P., Glover, E., and Kende, A. S., 1976, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is the receptor for the induction of aryl hydrocarbon hydroxylase, J. Biol. Chem., 251:4936.PubMedGoogle Scholar
  53. Poland, A. P., Glover, E., Robinson, J. R., and Nebert, D. W., 1974, Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1 450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons, J. Biol. Chem., 249:5599.PubMedGoogle Scholar
  54. Poland, A., and Knutson, J. C., 1982, 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity, Annu. Rev. Pharmacol. Toxicol., 22:517.PubMedCrossRefGoogle Scholar
  55. Song, B.-J., Gelboin, H. V., Park, S. S., Yang, C. S., and Gonzalez, F. J., 1986, Complementary DNA and protein sequences of ethanol-inducible rat and human P-450s: Transcriptional and posttranscriptional regulation of the rat enzyme, J. Biol. Chem., 261:16689.PubMedGoogle Scholar
  56. Speiser, P. W., and New, M. I., 1985, Genetics of steroid 21-hydroxylase deficiency, Trends Genet., 1:275.CrossRefGoogle Scholar
  57. Weber, W. W., 1987, “The Acetylator Genes and Drug Response,” in press, Oxford University Press, New York.Google Scholar
  58. Weber, W. W., and Hein, D. W., 1984, N-Acetylation pharmacogenetics, Pharmacol. Rev., 37:25.Google Scholar
  59. White, P. C., New, M. I., and Dupont, B., 1986, Structure of human steroid 21-hydroxylase genes, Proc. Natl. Acad. Sci. U.S.A., 83:5111.PubMedCrossRefGoogle Scholar
  60. Yang, C. S., Tu, Y. Y., Koop, D. R., and Coon, M. J., 1985, Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes, Cancer Res., 45:1140.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Daniel W. Nebert
    • 1
  1. 1.Laboratory of Developmental PharmacologyNational Institute of Child Health and Human DevelopmentBethesdaUSA

Personalised recommendations