New Technologies for Studying Human Genetic Variation

  • Norman Arnheim
Part of the Basic Life Sciences book series (BLSC, volume 43)


The analysis of individual genetic variation is an important component of risk assessment. Recently a number of new technologies haye “been developed which can aid in the understanding of human variability at the genetic level. Together these techniques significantly enhance our ability to analyze the variation in the nucleotide sequence of specific genes in a population and to identify the spectrum of mutations in specific genes that are caused by a variety of agents.


Sickle Cell Anemia Sickle Cell Prenatal Diagnosis Beta Thalassemia Klenow Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cariello, N. F. and Thilly, W. G., (1986). Use of gradient denaturing gels to determine mutational spectrum in human cells: In: Mechanisms of DNA Damage and Repair. Michael G. Simic (ed.) Plenum Press, New York and London.Google Scholar
  2. Conner, B. J., Reves, A. A., Morin, C., Itakura, K., Teplitz, R. L. and Wallace, B., (1983). Detection of sickle cell BS-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 80: 278–282.PubMedCrossRefGoogle Scholar
  3. Embury, S. H., Scharf, S. J., Saiki, R. K., Gholson, M. A., Golbus, M., Arnheim, N. and Erlich, H. A., (1981). Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. New Engl. J. of Med. 316(11): 656–662.CrossRefGoogle Scholar
  4. Fischer, S. G. and Lerman, L. S., (1983). DNA fragments differing by single base-pair substitutions are separated in denaturing gels: correspondence with melting theory. Proc. Natl. Acad. Sci. U.S.A. 80: 1579–1583.PubMedCrossRefGoogle Scholar
  5. Geever, R. F., Wilson, L. B., Nallaseth, F. S., Milner, P. F., Bittner, M., and Wilson, J. T., (1981). Direct identification of sickle cell anemia by blot hybridization. Proc. Natl. Acad. Sci. U.S.A. 78: 5081–5085.PubMedCrossRefGoogle Scholar
  6. Kidd, V. J., Golbus, M. S., Wallace, R. B., Itakura, K. and Wood, S. L. C. (1984). Prenatal diagnosis of alpha., -antitrypsin deficiency by direct analysis of the mutation site in the gene. New. Engl. J. of Med. 310: 639.CrossRefGoogle Scholar
  7. Mullis, K. and Faloona, F., (1987). Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods in Enzymology, Vol. 55, in press.Google Scholar
  8. Myers, R. M., Larin, Z. and Maniatis, T., (1985). Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230: 1242–1246.PubMedCrossRefGoogle Scholar
  9. Myers, R. M., Lumelsky, N., Lerman, L. S. and Maniatis, T., (1985). Detection of single base substitutions in total genomic DNA. Nature 313: 495–498.PubMedCrossRefGoogle Scholar
  10. Orkin, S. H., Markham, A. F. and Kazazian, H. H., (1983). Direct detection of the common mediterranean beta-thalassemia gene with synthetic DNA probes. J. Clin. Invest. 71: 775.PubMedCrossRefGoogle Scholar
  11. Pirastu, M., Kan, Y. W., Cao, A., Conner, B. J., Teplitz, R. L. and Wallace, R. B., (1983). Prenatal diagnosis of beta-thalassemia. Detection of a single nucleotide mutation in DNA. New Engl. J. of Med. 309: 284.CrossRefGoogle Scholar
  12. Saiki, R. K., Arnheim, N. and Erlich, H. A., (1985). A novel method for the detection of polymorphic restriction sites by cleavage of oligonucleotide probes: application to sickle cell anemia. Biotechnology 3: 1008–1012.CrossRefGoogle Scholar
  13. Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B. and Erlich, H. A., (1986). Analysis of enzymatically amplified beta-globin and HLA-DQa DNA with allele-specific oligonucleotide probes. Nature 324: 163–166.PubMedCrossRefGoogle Scholar
  14. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N., (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.PubMedCrossRefGoogle Scholar
  15. Scharf, S. J., Horn, G. T. and Erlich, H. A., (1986). Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science 233: 1076–1078.PubMedCrossRefGoogle Scholar
  16. Southern, E. M., (1975). Detection of specific sequences among DNA fragments separated by Gel Electrophoresis. J. Mol. Bio. 98: 503–517.CrossRefGoogle Scholar
  17. Thilly, W. G., (1985). Carcinogenesis, Volume 10, (E. Huberman and S. H. Barr, eds.) Raven Press, New York. pp. 511–528.Google Scholar
  18. Winter, E., Yamamoto, F., Almoguera, C. and Perucho, M., (1985). A method to detect and characterize point mutations in transcribed genes: amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc. Natl. Acad. Sci. U.S.A. 82: 7575–7579.PubMedCrossRefGoogle Scholar
  19. Wrischnik, L. A., Higuchi, R. G., Stoneking, M., Erlich, H. A., Arnheim, N. and Wilson, A. C, (1987). Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res. 15(2): 529–542.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Norman Arnheim
    • 1
  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations