Skip to main content

Constitutional, Somatic Genetic and Environmental Aspects of the Phenotypic Diversity of Aging in Human Subjects

  • Chapter
Book cover Phenotypic Variation in Populations

Part of the book series: Basic Life Sciences ((BLSC,volume 43))

Abstract

For the case of a large number of parameters, gerontologists typically report an increase in variance as a function of age. This is particularly true when the parameter of interest is subject to physiological stress, thus testing the degree to which the organism can maintain homeostasis. Such observations are so common that the phenomenon could be a candidate for one of the few “laws” of gerontology so far uncovered. Like all laws, there are exceptions, the best example of which is the loss of accommodation of the ocular lens as a function of age in human subjects. As one approaches age 50, the lens has already lost most of its mobility, with very little interindividual variation, much less than what is observed during the early phases of life (Friedenwald, 1952; Ponten, 1977). Most such studies of individual variations are cross-sectional in design. The question can therefore be raised that the observed differences may derive, at least in part, from a cohort effect—some differential environmental experience of the contrasting age groups. Therefore, longitudinal studies of individual variations during aging should be pursued whenever feasible. Unfortunately, such studies are rare, although we can expect to learn a great deal from ongoing investigations such as those of the Baltimore Longitudinal Study of the National Institute on Aging (Shock et al., 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, E. C., and Dekker, E. E., eds., 1985, “Modification of Proteins During Aging,” Alan Liss, Inc., New York.

    Google Scholar 

  • Altman, P. L., and Dittmer, D. S., 1962, Lifespans: Mammals, in: “Growth. Biological Handbook,” page 445, Fed. Soc. Exp. Biol., Washington, D.C.

    Google Scholar 

  • Bender, J., and Kleckner, N., 1986, Genetic evidence that Tn10 transposes by a nonreplicative mechanism, Cell, 45:801.

    Article  PubMed  CAS  Google Scholar 

  • Burns, R. S., Chierek, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, D. J., 1983, A primate model of Parkinsonism: selective destruction of the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. USA,b 80:4546.

    Article  PubMed  CAS  Google Scholar 

  • Busch, G. L., Case, S. M., Wilson, A. C., and Patton, J. L., 1977, Rapid speciation and chromosomal evolution in mammals, Proc. Natl. Acad. Sci. USA, 74:3942.

    Article  Google Scholar 

  • Cassarett, G. W., 1964, Similarities and contrasts between radiation and time pathology, Adv. Gerontol. Res., 1:109.

    Google Scholar 

  • Chaudhari, N., and Hahn, W. E., 1983, Genetic expression in the developing brain, Science, 220:924.

    Article  PubMed  CAS  Google Scholar 

  • Comfort, A., 1979, “The Biology of Senescence,” 3rd edition, Elsevier, New York.

    Google Scholar 

  • Crowley, C., and Curtis, H. J., 1963, The development of somatic mutations in mice with age, Proc. Natl. Acad. Sci. USA, 49:626.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, H. J., Leith, J., and Tilley, J., 1966, Chromosome aberrations in liver cells of dogs of different ages, J. Gerontol., 21:268.

    PubMed  CAS  Google Scholar 

  • Curtis, H. J., and Miller, K., 1971, Chromosomal aberrations in liver cells of guinea pigs, J. Gerontol., 26:292.

    PubMed  CAS  Google Scholar 

  • Del Zompo, M., Piccardi, M. P., Bernardi, F., Bonuccelli, U., and Corsini, G. U., 1986, Involvement of monoamine oxidase enzymes in the action of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, a selective neurotoxin, in the squirrel monkey: Binding and biochemical studies, Brain Res., 378:320.

    Article  PubMed  Google Scholar 

  • Diamond, J. M., 1982, Big-bang reproduction and aging in male marsupial mice, Nature, 298:115.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J., Martin, G. M., Schultz, A. L., and Motulsky, A. G., 1966, Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process, Medicine, 45:177.

    PubMed  CAS  Google Scholar 

  • Friedenwald, J. S., 1952, The eye, in “Cowdry’s Problems of Aging, Biological and Medical Aspects,” page 239, A. Lansing, ed., Williams and Wilkens, Baltimore.

    Google Scholar 

  • Goebl, M. G., and Petes, T. D., 1986, Most of the yeast genomic sequences are not essential for cell growth and division, Cell, 46:983.

    Article  PubMed  CAS  Google Scholar 

  • Holehan, A., and Merry, B., 1986, The experimental manipulation of aging by diet, Biol. Rev., 61:329.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W., Ullard, P., Tetrud, J. W., and Irwin, I., 1983, Chronic Parkinsonism in humans due to a product of Meperidine-analog synthesis, Science, 219:979.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. M., 1978, Genetic syndromes in man with potential relevance to the pathobiology of aging, in: “Genetic Effects on Aging, Birth Defects Original Article Series,” vol 14, no. 7, page 5, D. Bergsma and D.E. Harrison, eds., Alan R. Liss, Inc., New York.

    Google Scholar 

  • Martin, G. M., 1982, Syndromes of accelerated aging, Natl. Cancer Inst. Monogr., 60:241.

    PubMed  CAS  Google Scholar 

  • Martin, G. M., Ogburn, C. E., and Wight, T. N., 1983, Comparative rates of decline in the primary cloning efficiencies of smooth muscle cells from the aging thoracic aorta of two murine species of contrasting maximum lifespan potentials, Am. J. Pathol., 110:236.

    PubMed  CAS  Google Scholar 

  • Martin, G. M., Fry, M., and Loeb, L. A., 1985, Somatic mutation and aging in mammalian cells, in: “Molecular Biology of Aging: Gene Stability and Gene Expression,” page 7, R. S. Sohal, L. S. Birnbaum and R. G. Cutler, eds., Raven Press, New York.

    Google Scholar 

  • Masaro, E., 1985, State of knowledge on action of food restriction and aging, in: “Molecular Biology of Aging,” page 105, A. D. Woodhead, A. D. Blackett and A. Hollaender, eds., Plenum Press, New York

    Google Scholar 

  • McKusick, V. A., 1986, “Mendelian Inheritance in Man,” 7th edition, Johns Hopkins, Baltimore.

    Google Scholar 

  • Ponten, J., 1977, Abnormal cell growth (neoplasia) and aging, in: “Handbook of the Biology of Aging,” page 536, C. E. Finch and L. Hayf lick, eds., Van Nostrand Reinhold, New York.

    Google Scholar 

  • Sacher, G. A., 1977, Life table modification and life prolongation, in: “Handbook of the Biology of Aging,” page 582, C. E. Finch and L. Hayflick, eds., Van Nostrand Reinhold, New York.

    Google Scholar 

  • Salk, D., Fujiwara, U., and Martin, G. M., editors, 1985, “Werner’s Syndrome and Human Aging.,” Adv. Exper. Med. Biol. 190, Plenum Press, New York.

    Google Scholar 

  • Shock, N. W., Greulich, R. C., Andres, R., Arenberg, D., Costa, P. T., Jr., Lakatta, E. G., and Tobin, J. D., 1984, “Normal Human Aging: The Baltimore Longitudinal Study of Aging,” NIH Publication No. 84.2450, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A., and Roy, D. N., 1986, Motorneurone disease on Guam: Possible role of a food neurotoxin, Lancet, 1:965.

    Article  PubMed  CAS  Google Scholar 

  • St. George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., Myers, R. H., Feldman, R. G., Pollen, D. Drachman, D. et al., 1987, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21, Science, 235:885.

    Article  Google Scholar 

  • Weindruch, R., Walford, R. L., Fligiel, S., and Guthrie, D., 1986, The retardation of aging in mice by dietary restriction: Longevity, cancer immunity and lifetime energy intake, J. Nutrition, 116:641.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Martin, G.M. (1988). Constitutional, Somatic Genetic and Environmental Aspects of the Phenotypic Diversity of Aging in Human Subjects. In: Woodhead, A.D., Bender, M.A., Leonard, R.C. (eds) Phenotypic Variation in Populations. Basic Life Sciences, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5460-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5460-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5462-8

  • Online ISBN: 978-1-4684-5460-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics