Skip to main content

Intracellular Traffic of the Mannose 6-Phosphate Receptor and Its Ligands

  • Chapter
Immunobiology of Proteins and Peptides IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 225))

Abstract

Eukaryotic cells are compartmentalized, increasing the efficiency of the cell by allowing the existence of microenvironments of unique properties and by segregating potentially incompatible biochemical reactions. The targeting of newly synthesized macromolecules to their correct location within the cell and the maintenance of the distinctive macromolecular composition of these compartments is an important feature of cellular organization. The mechanisms by which cells direct the intracellular traffic of macromolecules are the subject of much investigation in cell biology. One well-studied example of intracellular sorting and trafficking is the mannose 6-phosphate-mediated transport of lysosomal enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop, D.F., Calhoun, D.H., Bernstein, H.S., Hantzopoulos, P., Quinn, M., and Desnick, R. J., 1986, Human a-galactosidase A: Nucleotide sequence of a eDNA clone encoding the mature enzyme, Proc. Natl. Acad. Sei. USA, 83: 4859–4863.

    Article  CAS  Google Scholar 

  • Brown, W.J., Constantinescu, E., and Farquhar, M.G., 1984, Redistribution of mannose 6-phosphate receptors induced by tunicamycin and chloroquine, J. Cell Biol., 99: 320–326.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W.J., and Farquhar, M.G., 1984, The mannose 6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae, Cell, 36: 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W.J., Goodhouse, J., and Farquhar, M.G., 1986, Mannose 6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes, J. Cell Biol., 103: 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  • Creek, K.E., Grubb, J.H., and Sly, W.S., 1983 Immunological inactivation of receptor-mediated uptake and intracellular sorting of lysosomal enzymes, J. Cell Biol., 97:253a (abstract).

    Google Scholar 

  • Creek, K.E., and Sly, W.S., 1983, Biosynthesis and turnover of the phospho- mannosyl receptor in human fibroblasts, Biochem. J., 214: 353–360.

    PubMed  CAS  Google Scholar 

  • Creek, K.E., and Sly, W.S., 1984, The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier, Amsterdam.

    Google Scholar 

  • De Duve, C., De Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol., 23: 2495–2531.

    Article  PubMed  Google Scholar 

  • Dunphy, W.G., Fries, E., Urbani, L.J., and Rothman, J.E., 1981, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA, 78:7453–7457.

    Google Scholar 

  • Faust, P.L., Kornfeld, S., and Chirgwin, J.M., 1985, Cloning and sequence analysis of eDNA for human cathepsin D, Proc. Natl. Acad. Sci. USA, 82: 4910–4914.

    Article  PubMed  CAS  Google Scholar 

  • Fedde, K.N., and Sly, W.S., 1985, Ricin-binding properties of acid hydrolases from isolated lysosomes implies prior processing by terminal transferases of the trans-Golgi apparatus, Biochem. Biophys. Res. Commun., 133: 614–620.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, H.D., Gonzalez-Noriega, A., and Sly, W.S., 1980a, 8-glucuronidase binding to human fibroblast membrane receptors, J. Biol. Chem., 255: 5069–5074.

    PubMed  CAS  Google Scholar 

  • Fischer, H.D., Gonzalez-Noriega, A., Sly, W.S., and Morre, D.J., 1980b, Phosphomannosyl-enzyme receptors in rat liver, J. Biol. Chem., 255: 9608–9615.

    PubMed  CAS  Google Scholar 

  • Fischer, H.D., Natowicz, M., Sly, W.S., and Bretthauer, R.K., 1980e, Fibroblast receptor for lysosomal enzymes mediates pinocytosis of multivalent phosphomannan fragment, J. Cell Biol., 84: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Freeze, H.H., Miller, A.L., and Kaplan, A., 1980, Acid hydrolases from Dictyostelium discoideum contain phosphomannosyl recognition markers, J. Biol. Chem., 255:11081–11084.

    PubMed  CAS  Google Scholar 

  • Fukushima, H., de Wet, J.R., and O’Brien, J.S., 1985, Molecular cloning of a eDNA for human a-L-fucosidase, Proc. Natl. Acad. Sci. USA, 82: 1262–1265.

    Google Scholar 

  • Gabel, C.A., Costello, C.E., Reinhold, V.N., Kurtz, L., and Kornfeld, S., 1984, Identification of methyiphosphomannosyl residues as components of the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins, J. Biol. Chem., 259: 13762–13769.

    PubMed  CAS  Google Scholar 

  • Gartung, C., Braulke, T., Hasilik, A., and von Figura, K., 1985, Internalization of blocking antibodies against mannose 6-phosphate specific receptors, EMBO J., 4: 1725–1730.

    PubMed  CAS  Google Scholar 

  • Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Hasilik, A., and von Figura, K., 1984, Ultrastructural localization of the mannose 6-phosphate receptor in rat liver, J. Cell Biol., 98: 2045–2054.

    Article  Google Scholar 

  • Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Hasilik, A., and von Figura, K., 1985, Possible pathways for lysosomal enzyme delivery, J. Cell Biol., 101: 2253–2262.

    Article  PubMed  CAS  Google Scholar 

  • Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Lodish, H.F., and Schwartz, A.L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-labeling immunoelectron microscopy during receptor-mediated endocytosis, Cell, 32: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, D., Gabel, C., and Kornfeld, S., 1984, Processing of lysosomal enzyme oligosaccharide units, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier Press, New York.

    Google Scholar 

  • Goldberg, D.E., and Kornfeld, S., 1981, The phosphorylation of 0-glucuronidase oligosaceharides in mouse P388D1 cells, J. Biol. Chem., 256: 13060–13067.

    PubMed  CAS  Google Scholar 

  • Goldberg, D.E., and Kornfeld, S., 1983, Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation, J. Biol. Chem., 258: 3159–3165.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Noriega, A., Grubb, J.H., Talkad, V., and Sly, W.S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol., 85: 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Hasilik, A., Klein, U., Waheed, A., Strecker, G., and von Figura, K., 1980, Phosphorylated oligosaceharides in lysosomal enzymes: Identification of a -N-acetylglucosamine(1)phospho(6)mannose diester groups, Proc. Natl. Acad. Sci. USA, 77: 7074–7078.

    Google Scholar 

  • Hasilik, A., and Neufeld, E.F., 1980, Biosynthesis of lysosomal enzymes in fibroblasts, J. Biol. Chem., 255: 4937–4945.

    PubMed  CAS  Google Scholar 

  • Hasilik, A., and von Figura, K., 1984, Processing of lysosomal enzymes in fibroblasts, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Hickman, S., and Neufeld, E.F., 1972, A hypothesis for I-cell disease: Defective hydrolases that do not enter lysosomes, Biochem. Biophys. Res. Commun., 49: 992–999.

    Article  PubMed  CAS  Google Scholar 

  • Hoflack, B., and Kornfeld, S., 1985a, Lysosomal enzyme binding the mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: Evidence for the existence of a second mannose 6-phosphate receptor, Proc. Natl. Acad. Sci. USA, 82: 4428–4432.

    Article  PubMed  CAS  Google Scholar 

  • Hoflack, B., and Kornfeld, S., 1985b, Purification and characterization of a cation-dependent mannose 6-phosphate receptor from murine P388D1 macrophages and bovine liver, J. Biol. Chem., 260: 12008–12014.

    PubMed  CAS  Google Scholar 

  • Kaplan, A., Achord, D.T., and Sly, W.S., 1977, Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts, Proc. Natl. Acad. Sei. USA, 74: 2026–2030.

    Article  CAS  Google Scholar 

  • Korneluk, R.G., Mahuran, D.J., Neote, K., Klavins, M.H., O’Dowd, B.F., Tropak, M., Willard, H.F., Anderson, M.J., Lowden, J.A., and Gravel, R.A., 1986, Isolation of eDNA clones coding for the a subunit of human ß-hexo-saminidase, J. Biol. Chem., 261: 8407–8413.

    PubMed  CAS  Google Scholar 

  • Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem., 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  • Lang, L., Reitman, M.L., Tang, J., Roberts, R.M., and Kornfeld, S., 1984, Lysosomal enzyme phosphorylation, J. Biol. Chem., 259: 14663–14667.

    PubMed  CAS  Google Scholar 

  • Lemansky, P., Gieselmann, V., Hasilik, A., and von Figura, K., 1985, Synthesis and transport of lysosomal acid phosphatase in normal and I-cell fibroblasts, J. Biol. Chem., 260: 9023–9030.

    PubMed  CAS  Google Scholar 

  • McKusick, V.A., and Neufeld, E.F., 1983, The mucopolysaccharide storage diseases, in: “The Metabolic Basis of Inherited Disease,” fifth edition, J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein, and M.S. Brown, eds., McGraw-Hill, New York.

    Google Scholar 

  • Mitchell, D.C., Maler, T., and Jourdian, G.W., 1984, Detergent dissociation of bovine liver phosphomannosyl binding protein, J. Cell. Biochem., 24: 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Myerowitz, R., Piekarz, R., Neufeld, E.F., Shows, T.B., and Suzuki, K., 1985, Human ß-hexosaminidase a chain: Coding sequence and homology with the ß chain, Proc. Natl. Acad. Sci. USA, 82: 7830–7834.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, Y., Rosenfeld, M.G., Kreibich, G., Gubler, U., Sabatini, D.D., Adesnik, M., and Andy, R., 1986, Nucleotide sequence of rat preputial gland ß-glueuronidase eDNA and in vitro insertion of its encoded polypeptide into microsomal membranes, Proc. Natl. Acad. Sci. USA, 83: 7292–7296.

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sei. USA, 75: 3327–3331.

    Article  CAS  Google Scholar 

  • Oshima, A., Kyle, J.W., Miller, R.D., Hoffmann, J.W., Powell, P.P., Grubb, J.H., Sly, W.S., Tropak, M., Guise, K.S., and Gravel, R.A., 1987, Cloning, sequencing, and expression of cDNA for human -glucuronidase, Proc. Natl. Acad. Sci. USA, 84: 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Owada, M., and Neufeld, E.F., 1982, Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Mechem. Biophys. Res. Commun., 105: 814–820.

    Article  CAS  Google Scholar 

  • Pohlmann, R., Waheed, A., Hasilik, A., and von Figura, K., 1982, Synthesis of phosphorylated recognition marker in lysosomal enzymes is located in the cis part of Golgi apparatus, J. Biol. Chem., 257: 5323–5325.

    PubMed  CAS  Google Scholar 

  • Reitman, M.L., and Kornfeld, S., 1981, UDP-N-Acetylglucosamine: Glycoprotein N-acetylglucosamine-1-phosphotransferase, J. Biol. Chem., 256: 4275–4281.

    PubMed  CAS  Google Scholar 

  • Reitman, A.L., Varki, A., and Kornfeld, S., 1981, Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5’-diphosphate-N-acetylglucosamine: Glycoprotein N-acetylglucosaminylphosphotransferase activity, J. Clin. Invest., 67: 1574–1579.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, A.R., Peng, S.S., and Marshall, J.L., 1983, Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis, J. Cell. Biol., 96: 1064–1071.

    Article  PubMed  CAS  Google Scholar 

  • Rome, L.H., Weissman, B., and Neufeld, E.F., 1979, Direct demonstration of binding of a lysosomal enzyme, a-L-iduronidase, to receptors in cultured fibroblasts, Proc. Natl. Acad. Sci. USA, 76: 2331–2334.

    Article  PubMed  CAS  Google Scholar 

  • Roth, J., and Berger, E.G., 1982, Immunocytochemical localization of galactosyltransferase in HeLa cells: Codistribution with thiamine pyrophosphatase in trans-Golgi cisternae, J. Cell Biol., 93: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Sahagian, G.G., Distler, J., and Jourdian, G.W., 1981, Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular ß-galactosidase, Proc. Natl. Acad. Sci. USA, 78: 4289–4293.

    Article  PubMed  CAS  Google Scholar 

  • Sahagian, G.G., Distler, J., and Jourdian, G.W., 1982, Membrane receptor for phosphomannosyl residues, Methods Enzymol., 83: 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Sahagian, G.G., and Neufeld, E.F., 1983, Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells, J. Biol. Chem., 257: 7121–7128.

    Google Scholar 

  • Sahagian, G.G., and Steer, C.J., 1985, Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles, J. Biol. Chem., 260: 9838–9842.

    Google Scholar 

  • Sly, W.S., Fischer, H.D., Gonzalez-Noriega, A., Grubb, J.H., and Natowicz, M., 1981, Role of the 6-phosphomannosyl-enzyme receptor in intracellular transport and adsorptive pinocytosis of lysosomal enzymes, in: “Basic Mechanisms of Cellular Secretion,” A.R. Hand and C. Oliver, eds., Academic Press, New York.

    Google Scholar 

  • Sly, W.S., Merion, M., Schlesinger, P., Moehring, J.M., and Moehring, T.J., 1983, Defective endosome acidification in mammalian cell mutants “cross-resistant” to certain toxins and viruses, in: “Protein Synthesis,” A.K. Abraham, T.S. Elkhorn, and I.F. Pryme, eds., The Humana Press, Clifton, NJ.

    Google Scholar 

  • Steiner, A.W., and Rome, L.H., 1982, Assay and purification of a solubilized membrane receptor that binds the lysosomal enzyme a-L-iduronidase, Arch. Biochem. Biophys., 214: 681–687.

    Google Scholar 

  • Tager, J.M., 1984, Biosynthesis and deficiency of lysosomal enzymes, Trends Biochem. Sci., 10:324–326.

    Google Scholar 

  • Takahashi, T., Schmidt, P.G., and Tang, J., 1983, Oligosaceharide units of lysosomal cathepsin D from porcine spleen, J. Biol. Chem., 258: 2819–2830.

    Google Scholar 

  • Tsuji, S., Choudary, P.V., Martin, B.M., Winfield, S., Barranger, J.A., and Ginns, E.J., 1986, Nucleotide sequence of cDNA containing the complete coding sequence for human lysosomal glucocerebrosiolase, J. Biol. Chem., 261: 50–53.

    PubMed  CAS  Google Scholar 

  • van Elsen, A.F., and Leroy, J.G., 1979, Lysosomal enzymes in fibroblasts: Lectin affinities, in: “Models for the Study of Inborn Errors of Metabolism,” F.A. Hommes, ed., Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Varki, A., and Kornfeld, S., 1981, Purification and characterization of rat liver a-N-acetylglucosaminyl phosphodiesterase, J. Biol. Chem., 256: 9937–9943.

    PubMed  CAS  Google Scholar 

  • von Figura, K., Gieselmann, V., and Hasilik, A., 1984, Antibody to mannose 6-phosphate specific receptor induces receptor deficiency in human fibroblasts, EMBO J., 3: 1281–1286.

    Google Scholar 

  • von Figura, K., Gieselmann, V., and Hasilik, A., 1985, Mannose 6-phosphate specific receptor is a transmembrane protein with a C-terminal extension oriented towards the cytosol, Biochem. J., 225: 543–547.

    Google Scholar 

  • von Figura, K., and Weber, E., 1978, An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts, Biochem. J., 176: 943–950.

    Google Scholar 

  • Vladutiu, G.D., 1983, Effect of the co-existence of galactosyl and phosphomannosyl residues of ß-hexosaminidase on the processing and transport of the enzyme in MLI fibroblasts, Biochim. Biophysica Acta, 760: 363–370.

    Google Scholar 

  • Waheed, A., Hasilik, A., and von Figura, K., 1981, Processing of the phosphorylated recognition marker in lysosomal enzymes, J. Biol. Chem., 256: 5717–5721.

    PubMed  CAS  Google Scholar 

  • Waheed, A., Hasilik, A., and von Figura, K., 1982a, UDP-N-acetylglucosamine: Lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase, J. Biol. Chem., 257:12322–12331.

    Google Scholar 

  • Waheed, A., Pohlmann, R., Hasilik, A., von Figura, K., van Elsen, A., and Leroy, J.G., 1982b, Deficiency of UDP-N-acetylglucosamine: Lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients, Biochem. Biophys. Res. Commun., 105: 1052–1058.

    Google Scholar 

  • Walter, P. and Lingappa, V.R., 1986, Mechanism of protein translocation across the endoplasmic reticulum membrane, Ann. Rev. Cell Biol., 2: 499–516

    Article  PubMed  CAS  Google Scholar 

  • Willingham, M.C., Pastan, I.H., and Sahagian, G.G., 1983, Ultrastructural immunocytochemical localization of the phosphomannosyl receptor in Chinese hamster ovary ( CHO) cells, J. Histochem. Cytochem., 31: 1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Nolan, C.M., Sly, W.S. (1987). Intracellular Traffic of the Mannose 6-Phosphate Receptor and Its Ligands. In: Atassi, M.Z. (eds) Immunobiology of Proteins and Peptides IV. Advances in Experimental Medicine and Biology, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5442-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5442-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5444-4

  • Online ISBN: 978-1-4684-5442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics