Skip to main content

Bacteriophage P1

  • Chapter
The Bacteriophages

Part of the book series: The Viruses ((VIRS))

Abstract

We preface this review with a brief chronology of seminal P1 studies in order to illuminate the circumstances that molded the idiosyncratic development of P1 biology. The account that follows this brief historical preface deals first with Pl structure, second with successive stages in the life cycle of the phage, and third with comparative studies. It covers information available to us prior to November 1986 but additional material received throughout 1987 has also been inserted. Topics in P1 biology that have been treated in recent reviews include: the P1 genomic map (Yarmolinsky, 1987), transduction (Margolin, 1987; Masters, 1985), restriction-modification (Yuan, 1981; Krüger and Bickle, 1983), immunity to superinfection (Sternberg and Hoess, 1983; Scott, 1980), site-specific recombinations (Sadowski, 1986; Plasterk and Van de Putte, 1984; Sternberg and Hoess, 1983; Simon and Silverman, 1983), maintenance of the plasmid prophage (Scott, 1984; Sternberg and Hoess, 1983), and methylation-regulated gene expression and DNA processing (Sternberg, 1985; Marinus, 1984, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, M., 1974, The replication of prophage P1 DNA, Mol. Gen. Genet. 132: 63–72.

    PubMed  CAS  Google Scholar 

  • Abeles, A. L., 1986, P1 plasmid replication: Purification and DNA-binding activity of the replication protein, RepA, J. Biol. Chem. 261: 3548–3555.

    PubMed  CAS  Google Scholar 

  • Abeles, A. L., and Austin, S. J., 1987, P1 plasmid replication requires methylated DNA, EMBO J. 6: 3185–3189.

    PubMed  CAS  Google Scholar 

  • Abeles, A. L., Snyder, K. M., and Chattoraj, D. K., 1984, P1 plasmid replication: Replicon structure, J. Mol. Biol. 173: 307–324.

    PubMed  CAS  Google Scholar 

  • Abeles, A. L., Friedman, S. A., and Austin, S. J., 1985, Partition of unit-copy miniplasmids to daughter cells: III. The DNA sequence and functional organization of the P1 partition region, I. Mol. Biol. 185:261–272. Erratum corrected in J. Mol. Biol. 189: 387.

    Google Scholar 

  • Abelson, J., and Thomas, C. A. Jr., 1966, The anatomy of the T5 bacteriophage DNA molecule, J. Mol. Biol. 18: 262–291.

    CAS  Google Scholar 

  • Abremski, K., and Hoess, R., 1983, Bacteriophage Pl site-specific recombination: Purification and properties of the Cre recombinase protein, /. Biol. Chem. 259: 1509–1519.

    Google Scholar 

  • Abremski, K., and Hoess, R., 1985, Phage Pl Cre-loxP site-specific recombination: Effects of DNA supercoiling on catenation and knotting of recombinant products. Mol. Biol. 184: 211–220.

    CAS  Google Scholar 

  • Abremski, K., Hoess, R., and Sternberg, N., 1983, Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination, Cell 32: 1301–1311.

    PubMed  CAS  Google Scholar 

  • Adams, J N., and Luria, S. E., 1958, Transduction by bacteriophage P1. Abnormal phage function in transducing particles, Proc. Natl. Acad. Sci. USA 44: 590–594.

    CAS  Google Scholar 

  • Alton, N. K., and Vapnek, D., 1979, Nucleotide sequence of analysis of the chloramphenicol resistance transposon Tn9, Nature 282: 864–869.

    PubMed  CAS  Google Scholar 

  • Amati, P., 1962, Abortive infection of Pseudomonas aeruginosa and Serratia marcescens with coliphage P1, J. Bacteriol. 83: 433–434.

    PubMed  CAS  Google Scholar 

  • Amati, P., 1965, A case of Pld1 prophage curable by acridine orange treatment, Atti Assoc. Genet. It. Pavia 10: 79–85.

    Google Scholar 

  • Amundsen, S. K., Taylor, A. F., Chaudhury, A. M., and Smith, G. R., 1986, recD, the gene for an essential third subunit of exonuclease. V. Proc. Natl. Acad. Sci. USA 83:5558–5562.

    Google Scholar 

  • Anderson, T. F., and Walker, D. H. Jr., 1960, Morphological variants of the bacteriophage P1, Science 132: 1488.

    Google Scholar 

  • Arber, W., 1960a, Polylysogeny for bacteriophage lambda, Virology 11: 250–272.

    Google Scholar 

  • Arber, W., 1960b, Transduction of chromosomal genes and episomes in Escherichia coli, Virology 11: 273–288.

    CAS  Google Scholar 

  • Arber, W., and Dussoix, D., 1962, Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage X. Mol. Biol. 5: 18–36.

    CAS  Google Scholar 

  • Arber, W., and Morse, M. L., 1965, Host specificity of DNA produced by Escherichia coli. VI. Effects on bacterial conjugation, Genetics 51: 137–148.

    PubMed  CAS  Google Scholar 

  • Arber, W., and Wauters-Willems, D., 1970, Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T, Mol. Gen. Genet. 108: 203–217.

    PubMed  CAS  Google Scholar 

  • Arber, W., Hattman, S., and Dussoix, D., 1963, On the host-controlled modification of bacteriophage X, Virology 21: 30–35.

    PubMed  CAS  Google Scholar 

  • Arber, W., Yuan, R., and Bickle, T. A., 1975, Post-synthetic modification of macromolecules, FEBS Proc. 34: 3–22.

    Google Scholar 

  • Arber, W., Iida, S., June, H., Caspers, P., Meyer, J., and Hänni, C., 1978, Rearrangements of genetic material in Escherichia coli as observed on the bacteriophage P1 plasmid, Cold Spring Harbor Symp. Quant. Biol. 43: 1197–1208.

    Google Scholar 

  • Arber, W., Hümberlin, M., Caspers, P., Reif, H. J., lida, S., and Meyer, J., 1980, Spontaneous mutations in the Escherichia coli prophage P1 and IS-mediated processes, Cold Spring Harbor Symp. Quant. Biol. 45: 38–40.

    Google Scholar 

  • Arber, W., Sengstag, C., Caspers, P., and Dalrymple, B., 1985, Evolutionary relevance of genetic rearrangements involving plasmids, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 21–31, Plenum Press, New York.

    Google Scholar 

  • Austin, S., 1984, Bacterial plasmids that carry two functional centromere analogs are stable and are partitioned faithfully. Bacterial. 158: 742–745.

    CAS  Google Scholar 

  • Austin, S., and Abeles, A. L., 1983a, The partition of unit-copy mini-plasmids to daughter cells. I. P1 and F mini-plasmids contain discrete, interchangeable sequences sufficient to promote equipartition, J. Mol. Biol. 169: 353–372.

    CAS  Google Scholar 

  • Austin, S., and Abeles, A. L., 1983b, The partition of unit-copy mini-plasmids to daughter cells. II. The partition region of mini-P1 encodes an essential protein and a centromerelike site at which it acts. Mol. Biol. 169: 373–387.

    CAS  Google Scholar 

  • Austin, S., and Abeles, A., 1985, The partition functions of P1, P7 and F mini-plasmids, in: Plasmids in Bacteria (D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 215–226, Plenum Press, New York.

    Google Scholar 

  • Austin, S., and Wierzbicki, A., 1983, Two mini-F encoded proteins are essential for equipartition, Plasmid 10: 73–81.

    PubMed  CAS  Google Scholar 

  • Austin, S., Sternberg, N., and Yarmolinsky, M., 1978, Miniplasmids of bacteriophage P1. I. Stringent plasmid replication does not require elements that regulate the lytic cycle, J. Mol. Biol. 120: 297–309.

    PubMed  CAS  Google Scholar 

  • Austin, S., Ziese, M., and Sternberg, N., 1981, A novel role for site-specific recombination in maintenance of bacterial replicons, Cell 25: 729–736.

    PubMed  CAS  Google Scholar 

  • Austin, S., Hart, F., Abeles, A., and Sternberg, N., 1982, Genetic and physical map of a P1 miniplasmid. Bacteriol. 152: 63–71.

    CAS  Google Scholar 

  • Austin, S., Mural, R., Chattoraj, D., and Abeles, A., 1985, Trans-and cis-acting elements for the replication of P1 miniplasmids, J. Mol. Biol. 83: 195–202.

    Google Scholar 

  • Austin, S., Friedman, S., and Ludtke, D., 1986, The partition functions of three unit-copy plasmids can stabilize maintenance of plasmid pBR322 at low copy number. Bacterial. 168: 1010–1013.

    CAS  Google Scholar 

  • Bächi, B., and Arber, W., 1977, Physical mapping of Bg1II, BamHI, EcoRI, HindIII and Pstlrestriction fragments of bacteriophage Pl DNA, Mol. Gen. Genet. 153: 311–324.

    PubMed  Google Scholar 

  • Bächi, B., Reiser, J., and Pirrotta, V., 1979, Methylation and cleavage sequences of the EcoP 1 restriction-modification enzyme, J. Mol. Biol. 128: 143–163.

    PubMed  Google Scholar 

  • Bachmann, B., 1983, Linkage map of Escherichia coli K12, edition 7, Microbial. Rev. 47: 180–230.

    CAS  Google Scholar 

  • Backhaus, H., 1985, DNA packaging initiation of Salmonella bacteriophage P22: Determination of cut sites within the DNA sequence coding for gene 3. Viral. 55: 458–465.

    CAS  Google Scholar 

  • Bailone, A., Brandenburger, A., Levine, M., Pierre, M., Dutreix, M., and Devoret, R., 1984, Indirect SOS induction is promoted by ultraviolet light-damaged miniF and requires the miniF lynA locus, 1. Mol. Biol. 179: 367–390.

    CAS  Google Scholar 

  • Barbeyron, T., Kean, K., and Forterre, P., 1984, DNA adenine methylation of GATC se- quences appeared recently in the Escherichia colilineage. Bacterial. 160: 586–590.

    CAS  Google Scholar 

  • Baumstark, B. R., and Scott, J. R., 1980, The cl repressor of bactériophage P1. I. Isolation of the cl protein and determination of the P1 DNA region to which it binds, J. Mol. Biol. 140: 471–480.

    PubMed  CAS  Google Scholar 

  • Baumstark, B. R., and Scott, J. R., 1987, The c4 gene of phage P1, Virology 156: 197–203.

    PubMed  CAS  Google Scholar 

  • Baumstark, B. R., Lowery, K., and Scott, J. R., 1984, Location by DNA sequence analysis of copmutations affecting the number of plasmid copies of prophage P1, Mol. Gen. Genet. 194: 513–516.

    PubMed  CAS  Google Scholar 

  • Baumstark, B. R., Stovall, S. R., and Ashkar, S., 1987, Interaction of the Plcl repressor with P1 DNA. Localization of repressor binding sites near the cl gene, Virology, 156: 404–413.

    PubMed  CAS  Google Scholar 

  • Benbow, R. M., Zuccarelli, A. J., and Sinsheimer, R. L., 1974, A role for single stranded breaks on bacteriophage X174 genetic recombination, J. Mol. Biol. 88: 629–665.

    PubMed  CAS  Google Scholar 

  • Bender, R. A., and Sambucetti, L. C., 1983, Recombination-induced suppression of cell division following P1-mediated generalized transduction in Klebsiella aerogenes, Mol. Gen. Genet. 189: 263–268.

    PubMed  CAS  Google Scholar 

  • Bergquist, P., Saadi, S., and Maas, W. K., 1986, Distribution of basic replicons having homology with RepFIA, RepFIB, and RepFIC among IncFI group plasmids, Plasmid 15: 19–34.

    PubMed  CAS  Google Scholar 

  • Bertani, L. E., and Six, E. W., 1988, The P2-like phages and their parasite, P4, in: The Bacteriophages( R. Calendar, ed.), Vol. 2, pp. 73–143, Plenum, New York.

    Google Scholar 

  • Bertani, G., 1951, Studies in lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol. 62: 293–300.

    PubMed  CAS  Google Scholar 

  • Bertani, G., 1958, Lysogeny, Adv. Virus Res. 5: 151–193.

    Google Scholar 

  • Bertani, G., and Nice, S. J., 1954, Studies on lysogenesis. II. The effect of temperature on the lysogenization of Shigella dysenteriaewith phage PI, /. Bacteriol. 67: 202–209.

    CAS  Google Scholar 

  • Beyersmann, D., and Schuster, H., 1971, DNA synthesis in P1 infected E. colimutants temperature-sensitive in DNA replication, Mol. Gen. Genet. 114: 173–176.

    Google Scholar 

  • Bex, F., Karoui, H., Rokeach, L., Drèze, P., Garcia, L., and Couturier, M., 1983, Mini-F encoded proteins: Identification of a new 10.5 kilodalton species, EMBO J. 2: 1853–1861.

    PubMed  CAS  Google Scholar 

  • Black, L. W., and Showe, M. K., 1983, Morphogenesis of the T4 head, in: Bacteriophage T4( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), pp. 219–245, American Society for Microbiology, Washington.

    Google Scholar 

  • Boice, L. B., and Luria, S. E., 1963, Behavior of prophage P1 in bacterial matings. I. Transfer of the defective prophage Pl dl, Virology 20: 147–157.

    PubMed  CAS  Google Scholar 

  • Borek, E., and Ryan, A., 1958, The transfer of irradiation-elicited induction in a lysogenic organism. Proc. Natl. Acad. Sci. USA 44: 374–377.

    PubMed  CAS  Google Scholar 

  • Bomhoeft, J. W., and Stodolsky, M., 1981, Lytic cycle replicative forms of bacteriophages P1 and Pldl concatemer forms, Virology 112: 518–528.

    Google Scholar 

  • Botstein, D., Waddell, C. H., and King, J, 1973, Mechanism of head assembly and DNA encapsidation in Salmonellaphage P22. I. Genes, proteins, structures, and DNA maturation, J. Mol. Biol. 80: 669–695.

    PubMed  CAS  Google Scholar 

  • Botstein, D., Lew, K., Jarvik, V., and Swanson, C. Jr., 1975, Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. Mol. Biol. 91: 439–462.

    CAS  Google Scholar 

  • Brandenburger, A., Bailone, A., Lévine, A., and Devoret, R., 1984, Gratuitous induction, J. Mol. Biol. 179: 571–576.

    PubMed  CAS  Google Scholar 

  • Braun, R. E., and Wright, A., 1986, DNA methylation differentially enhances the expression of one of the two E. coli dnaApromoters in vivoand in vitro, Mol. Gen. Genet. 202: 246–250.

    PubMed  CAS  Google Scholar 

  • Briaux, S., Gerbaud, G., and Jaffé-Brachet, A., 1979, Studies of a plasmid coding for tetracycline resistance and hydrogen sulfide production incompatible with the pro-phage P1, Mol. Gen. Genet. 170: 319–325.

    PubMed  CAS  Google Scholar 

  • Briaux-Gerbaud, S., Gerbaud, G., and Jaffé-Brachet, A., 1981, Transposition of a tetracycline-resistance determinant (Tn1523) and cointegration events mediated by the pIP231 plasmid in Escherichia coli, Gene 15: 139–149.

    PubMed  CAS  Google Scholar 

  • Brockes, J. P., 1973, The DNA modification enzyme of bacteriophage Pl: Subunit structure, Biochem. I. 133: 629–633.

    CAS  Google Scholar 

  • Brockes, J. P., Brown, P. R., and Murray, K., 1974, Nucleotide sequences at the sites of action of the deoxyribonucleic acid modification enzyme of bacteriophage P1, /. Mol. Biol. 88: 437–443.

    CAS  Google Scholar 

  • Burck, C., Shapiro, J. A., and Hauer, B., 1984, The p CM system: Phage immunity-specific incompatibility with IncP-1 plasmids, Mol. Gen. Genet. 194: 340–342.

    PubMed  CAS  Google Scholar 

  • Campbell, A. M., 1969, The Episomes, Harper and Row, New York, pp. 13, 162.

    Google Scholar 

  • Capage, M. A., and Scott, J. R., 1983, SOS induction by P1 Km miniplasmids, J. Bacteriol. 155: 473–480.

    PubMed  CAS  Google Scholar 

  • Capage, M. A., Goodspeed, J. K., and Scott, J. R., 1982, Incompatibility group Y member relationships: pIP231 and plasmid prophages Pl and P7, Plasmid 8: 307–311.

    PubMed  CAS  Google Scholar 

  • Casjens, S., and Huang, W. M., 1982, Initiation of sequential packaging of bacteriophage P22 DNA. Mol. Biol. 157: 287–298.

    CAS  Google Scholar 

  • Caspar, D. L. D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27: 1–24.

    PubMed  CAS  Google Scholar 

  • Chattoraj, D., Cordes, K., and Abeles, A., 1984, Plasmid Pl replication: Negative control by repeated DNA sequences, Proc. Natl. Acad. Sci. LISA 81: 6456–6460.

    CAS  Google Scholar 

  • Chattoraj, D. K., Abeles, A. L., and Yarmolinsky, M. B., 1985a, P1 plasmid maintenance: A paradigm of precise control, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 355–381, Plenum Press, New York.

    Google Scholar 

  • Chattoraj, D. K., Abeles, A. L., and Yarmolinsky, M. B., 1985a, P1 plasmid maintenance: A paradigm of precise control, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 355–381, Plenum Press, New York.

    Google Scholar 

  • Chattoraj, D. K., Mason, R. J., and Wickner, S. H., 1988, Mini-P1 plasmid replication: The autoregulation-sequestration paradox, Cell52 (in apress).

    Google Scholar 

  • Chattoraj, D. K., Snyder, K. M., and Abeles, A. L., 1985h, PI plasmid replication: Multiple functions of RepA protein at the origin, Proc. Natl. Acad. Sci. USA 82: 2588–2592.

    CAS  Google Scholar 

  • Chattoraj, D. K., Pal, S. K., Swack, J. A., Mason, R. J., and Abeles, A. L., 1985c, An auto-regulatory protein is required for P1 replication, in: Sequence Specificity in Transcription and Translation, UCLA Symposia on Molecular and Cellular Biology, New Series ( R. Calendar and L. Gold, eds.), Vol. 30, pp. 271–280, Aan R. Liss, New York.

    Google Scholar 

  • Chelala, C. A., and Margolin, P., 1974, Effects of deletions on co-transduction linkage in Salmonella typhimurium. Evidence that bacterial chromosome deletions affect the formation of transducing DNA fragments, Mol. Gen. Genet. 131: 97–112.

    PubMed  CAS  Google Scholar 

  • Chesney, R. H., and Adler, E., 1982, Chromosomal location of attP7, the recA-independent P7 integration site used in the suppression of Escherichia coli dnaAmutations, J. Bacteriol. 150: 1400–1404.

    PubMed  CAS  Google Scholar 

  • Chesney, R. H., and Scott, J. R., 1975, Superinfection immunity and prophage repression in phage P1. II. Mapping of the immunity difference and ampicillin resistance loci of phage P1 and 49AMP, Virology 67: 375–384.

    PubMed  CAS  Google Scholar 

  • Chesney, R. H., and Scott, J. R., 1978, Suppression of a thermosensitive dnaAmutation of Escherichia coliby bacteriophage Pl and P7, Plasmid 1: 145–163.

    PubMed  CAS  Google Scholar 

  • Chesney, R. H., Vapnek, D., and Scott, J. R., 1978, Site-specific recombination leading to the integration of phages P1 and P7, Cold Spring Harbor Symp. Quant. Biol. 43: 1147–1150.

    Google Scholar 

  • Chesney, R. H., Scott, J. R., and Vapnek, D., 1979, Integration of the plasmid prophages P1 and P7 into the chromosome of Escherichia coli, J. Mol. Biol. 130: 161–173.

    PubMed  CAS  Google Scholar 

  • Chow, L. T., and Bukhari, A. I., 1976, The invertible DNA segments of coliphage Mu and coliphage P1 are identical, Virology 74: 242–248.

    PubMed  CAS  Google Scholar 

  • Chow, L. T., Broker, T. R., Kahmann, R., and Kamp, D., 1978, Comparison of the G DNA inversion in bacteriophages Mu, P1 and P7, in: Microbiology-1978( D. Schlessinger, ed.), pp. 55–56, American Society for Microbiology, Washington.

    Google Scholar 

  • Churchward, G., Linder, P., and Caro, L., 1983, The nucleotide sequence of replication and maintenance functions encoded by plasmid pSC101, Nucleic Acids Res. 11: 5645–5659.

    PubMed  CAS  Google Scholar 

  • Clowes, R. C., 1972, Molecular structure of bacterial plasmids, Bacteriol. Rev. 36: 361–405.

    PubMed  CAS  Google Scholar 

  • Coetzee, J. N., Datta, N., and Hedges, R. W., 1972, R factors from Proteus rettgeri, J. Gen. Microbiol. 72: 543–552.

    PubMed  CAS  Google Scholar 

  • Cohen, A., and Clark, A. J., 1986, Synthesis of linear plasmid multimers in Escherichia coli, J. Bacteriol. 167: 327–335.

    PubMed  CAS  Google Scholar 

  • Cohen, G., 1983, Electron microscopy study of early lytic replication forms of bacteriophage P1 DNA, Virology 131: 159–170.

    PubMed  CAS  Google Scholar 

  • Cowan, J. A., and Scott, J. R., 1981, Incompatibility among group Y plasmids, Plasmid 6: 202–221.

    PubMed  CAS  Google Scholar 

  • Cress, D. E., and Kline, B. C., 1976, Isolation and characterization of Escherichia colichromosomal mutants affecting plasmid copy number, /. Bacteriol. 125: 635–642.

    CAS  Google Scholar 

  • D’Ari, R., 1977, Effects of mutations in the immunity system of bacteriophage Pl. Virol. 23: 467–475.

    Google Scholar 

  • D’Ari, R., and Huisman, O., 1982, DNA replication and indirect induction of the SOS response in Escherichia coli, Biochimie 64: 623–627.

    PubMed  Google Scholar 

  • D’Ari, R., Jaffé-Brachet, A., Touati-Schwartz, D., and Yarmolinsky, M., 1975, A dnaB analog specified by bacteriophage P1, I. Mol. Biol. 94: 341–366.

    Google Scholar 

  • Bruijn, F. J., and Bukhari, A. I., 1978, Analysis of transposable elements inserted in the genomes of bacteriophages Mu and P1, Gene 3: 315–331.

    PubMed  Google Scholar 

  • Delhalle, E., 1973, Restriction et modification de bactériophages par Escherichia coliK12 impliquant un prophage Pl cryptique associé à différents plasmides, Ann. Microbiol. (Paris) 124A: 173–178.

    CAS  Google Scholar 

  • Devlin, B. H., Baumstark, B. R., and Scott, J. R., 1982, Superimmunity: Characterization of a new gene in the immunity region of P1, Virology 120: 360–375.

    PubMed  CAS  Google Scholar 

  • Dower, N. A., and Stahl, F. W., 1981, x activity during transduction-associated recombination, Proc. Natl. Acad. Sci. USA 78:7033–7037.

    Google Scholar 

  • Dreiseikelmann, B., Velleman, M., and Schuster, H., 1988, The clrepressor of bacteriophage Pl. Isolation and characterization of the repressor protein, J. Biol. Chem. 263: 1391–1397.

    PubMed  CAS  Google Scholar 

  • Dunn, T., Hahn, S., Ogden, S., and Schlief, R., 1984, An operator at —280 base pairs that is required for repression of araBADoperon promoter: Addition of DNA helical turns between the operator and promoter cyclically hinders repression, Proc. Natl. Acad. Sci. USA 81: 5017–5020.

    PubMed  CAS  Google Scholar 

  • Dussoix, D., and Arber, W., 1962, Host specificity of DNA produced by Escherichia coliII. Control over acceptance of DNA from infecting phage X. I. Mol. Biol. 5: 37–49.

    CAS  Google Scholar 

  • Ebel-Tsipis, J., Fox, M. S., and Botstein, D., 1972, Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA, J. Mol. Biol. 71: 449–469.

    PubMed  CAS  Google Scholar 

  • Edelbluth, C., Lanka, E., Von der Hude, W., Mikolajczyk, M., and Schuster, H., 1979, Association of the prophage Plbanprotein with the dnaBprotein of Escherichia coli. Overproduction of banprotein by a Plbac crrmutant, Eur. J. Biochem. 94: 427–435.

    PubMed  CAS  Google Scholar 

  • Eichenlaub, R., Wehlmann, H., and Ebbers, J., 1981, Plasmid mini-F encoded functions involved in replication and incompatibility, in: Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids(S. B. Levy, E. L. Koenig, and R. C. Clowes, eds.), pp. 327336, Plenum Press, New York.

    Google Scholar 

  • Eliason, J. L., and Sternberg, N., 1987, Characterization of the binding sites of clrepressor of bacteriophage Pl: evidence for multiple asymmetric sites, J. Mol. Biol., 198: 281–293.

    PubMed  CAS  Google Scholar 

  • Engelberg-Kulka, H., 1979, The requirement of nonsense suppression for the development of several phages, Mol. Gen. Genet. 170: 155–159.

    PubMed  CAS  Google Scholar 

  • Feiss, M., Widner, W., Miller, G., Johnson, G., and Christiansen, S., 1983a, Structure of bacteriophage X cohesive end site: Location of the sites of terminase binding (cosB)and nicking (cosN), Gene 24: 207–218.

    CAS  Google Scholar 

  • Feiss, M., Kobayashi, I., and Widner, W., 1983b, Separate sites for binding and nicking of bacteriophage X DNA by terminase, Proc. Natl. Acad. Sci. USA 80: 955–959.

    CAS  Google Scholar 

  • Fortson, M. R., Scott, J. R., Yun, T., and Vapnek, D., 1979, Map location of the kanamycin resistance determinant in PlKmo, Virology 96: 332–334.

    PubMed  CAS  Google Scholar 

  • Franklin, N. C., 1969, Mutation in gal U gene of E. coli blocks phage P1 infection, Virology 38: 189–191.

    CAS  Google Scholar 

  • Friedman, D. I., Plantefaber, L. C., Olson, E. J., Carver, D., O’Dea, M. H., and Gellert, M., 1984, Mutations in the DNA gyrBgene that are temperature sensitive for lambda site-specific recombination, Mu growth, and plasmid maintenance, J. Bacteriol. 157: 490–497.

    PubMed  CAS  Google Scholar 

  • Friedman, S. A. and Austin, S. J., 1988, The PI plasmid-partition system synthesizes two essential proteins from an autoregulated operon, Plasmid (in apress).

    Google Scholar 

  • Friedman, S., Martin, K., and Austin, S., 1986, The partition system of the P1 plasmid, in: Banbury Report 24. Antibiotic Resistance Genes: Ecology, Transfer, and Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 285–294.

    Google Scholar 

  • Froehlich, B. J., Tatti, K., and Scott, J. R., 1983, Evidence for positive regulation of plasmid prophage P1 replication: Integrative suppression by copy mutants, I. Bacteriol. 156: 205–211.

    CAS  Google Scholar 

  • Froehlich, B. J., Watkins, C., and Scott, J. R., 1986, IS1-dependent generation of high copy number replicons from P1ApCm as a mechanism of gene amplification. Bacterial. 166: 609–617.

    CAS  Google Scholar 

  • Fuller, R. S., Funnel), B., and Kornberg, A., 1984, The DNA protein complex with the E. colichromosomal replication origin (oriC)and other DNA sites, Cell 38: 889–900.

    PubMed  CAS  Google Scholar 

  • Fuller, R. S., Kaguni, J. M., and Kornberg, A., 1981, Enzymatic replication of the origin of the Escherichia colichromosome, Proc. Natl. Acad. Sci. USA 78: 7370–7374.

    PubMed  CAS  Google Scholar 

  • Funnell, B. E., 1988, Mini-P1 plasmid partitioning: Excess parB protein destabilizes plasmids containing the centromere parS, I. Bacteriol. 170: 954–960.

    CAS  Google Scholar 

  • Gellert, M., 1981, DNA topoisomerases, Anna. Rev. Biochern. 50: 879–910.

    CAS  Google Scholar 

  • German, M., and Syvanen, M., 1982, Incompatibility between bacteriophage X and the sex factor F, Plasmid 8: 207–210.

    PubMed  CAS  Google Scholar 

  • Gill, G. S., Hull, R. C., and Curtiss, R. III, 1981, Mutator bacteriophage D108 and its DNA: An electron microscopic characterization, J. Virol. 37: 420–430.

    PubMed  CAS  Google Scholar 

  • Glover, S. W., and Colson, C., 1969, Genetics of host controlled restriction and modification in Escherichia coli, phage P1 transduction, Genet. Res. 13: 227–240.

    PubMed  CAS  Google Scholar 

  • Glover, S. W., Schell, J., Symonds, N., and Stacey, K. A., 1963, The control of host-induced modification by phage P1, Genet. Res. 4: 480–482.

    Google Scholar 

  • Godard, C., Beumer-Jochmans, M. P., and Beumer, J., 1971, Apparition des sensibilités aux phages T et à des colicines chez Shigella flexneriF6S survivant à l’infection par un phage Lisbonne. 1. Modification des propriétés biologiques de surface, Ann. Inst. Pasteur 120: 475–489.

    CAS  Google Scholar 

  • Goldberg, R. B., Bender, R. A., and Streicher, S. L., 1974, Direct selection of phage P1-sensitive mutants of enteric bacteria. Bacteriol. 118: 810–814.

    CAS  Google Scholar 

  • Golub, E. I., and Low, K. B., 1985, Conjugative plasmids of enteric bacteria from many different incompatibility groups have similar genes for single-stranded DNA-binding proteins, J. Bacteriol. 162: 235–241.

    PubMed  CAS  Google Scholar 

  • Golub, E. I., and Low, K. B., 1986, Unrelated conjugative plasmids have sequences which are homologous to the leading region of the F factor. Bacteriol. 166: 670–672.

    CAS  Google Scholar 

  • Gottesman, S., and Zipser, D., 1978, Deg phenotype of E. coli Ionmutants. Bacteriol. 133: 844–851.

    CAS  Google Scholar 

  • Gross, J., and Englesberg, E., 1959, Determination of the order of mutational sites governing L-arabinose utilization in Escherichia coliB/r by transduction with phage Plbt, Virology 9: 314–331.

    PubMed  CAS  Google Scholar 

  • Haberman, A., 1974, The bacteriophage P1 restriction endonuclease, /. Mol. Biol. 89: 545–563.

    CAS  Google Scholar 

  • Hadi, S. M., Bächi, B., Iida, S., and Bickle, T. A., 1983, DNA restriction-modification enzymes of phage Pl and plasmid pl5B. Mol. Biol. 165: 19–34.

    CAS  Google Scholar 

  • Hakkaart, M. J. J., Van den Elzen, P. J. M., Veltkamp, E., and Nijkamp, H. J. J., 1984, Maintenance of multicopy plasmid C1oDF13 in E. colicells: Evidence for site-specific recombination at parB, Cell 36: 203–209.

    PubMed  CAS  Google Scholar 

  • Hanks, M. C. and Masters, M., 1987, Transductional analysis of chromosome replication time, Mol. Gen. Genet. 210: 288–293.

    PubMed  CAS  Google Scholar 

  • Hansen, E. B., and Yarmolinsky, M. B., 1986, Host participation in plasmid maintenance: Dependence upon dnaAof replicons derived from Pl and F, Proc. Natl. Acad. Sci. USA 83: 4423–4427.

    PubMed  CAS  Google Scholar 

  • Hansen, F. G., Hansen, E. B., and Atlung, T., 1982, The nucleotide sequence of the dnaAgene promoter and of the adjacent rpmHgene, coding for the ribosomal protein L34, of Escherichia coli, EMBO J. 1: 1043–1048.

    PubMed  CAS  Google Scholar 

  • Harriman, P., 1971, Appearance of transducing activity in P1 infected Escherichia coli, Virology 45: 324–325.

    PubMed  CAS  Google Scholar 

  • Harriman, P. D., 1972, A single-burst analysis of the production of P1 infectious and transducing particles, Virology 48: 595–600.

    PubMed  CAS  Google Scholar 

  • Hattman, S., Brooks, J. E., and Masurekar, M., 1978, Sequence specificity of the Pl modification methylase (M.EcoPl) and the DNA methylase (M.Ecodam) controlled by the Escherichia coli damgene, J. Mol. Biol. 126: 367–380.

    PubMed  CAS  Google Scholar 

  • Hawley, D. K., and McClure, W. R., 1983, Compilation and analysis of Escherichia coli promoter DNA sequences, Nucleic Acids Res. 11: 2237–2255.

    PubMed  CAS  Google Scholar 

  • Hay, N., and Cohen, G., 1983, Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1, Virology 131: 193–206.

    PubMed  CAS  Google Scholar 

  • Hayakawa, Y., Murotsu, T., and Matsubara, K., 1985, Mini-F protein that binds to a unique region for partition of mini-F plasmid DNA, J. Bacteriol. 163: 349–354.

    PubMed  CAS  Google Scholar 

  • Hayes, W., 1953, Observations on a transmissible agent determining sexual differentiation in Bact. coli, J. Gen. Microbiol. 8: 72–88.

    PubMed  CAS  Google Scholar 

  • Hays, J. B., and Boehmer, S., 1978, Antagonists of DNA gyrase inhibit repair and recombination of UV-irradiated phage lambda, Proc. Natl. Acad. Sci. USA 75: 4125–4129.

    PubMed  CAS  Google Scholar 

  • Hedges, R. W., Jacob, A. E., Barth, P. T., and Grinter, N. J., 1975, Compatibility properties of P1 and 4AMP prophages, Mol. Gen. Genet. 141: 263–267.

    CAS  Google Scholar 

  • Heilmann, H., Reeve, J. N., and Puhler, A., 1980a, Identification of the repressor and repressor bypass (antirepressor) polypeptides of bacteriophage P1 synthesized in infected minicells, Mol. Gen. Genet. 178: 149–154.

    CAS  Google Scholar 

  • Heilmann, H., Burkardt, H. J., Puhler, A., and Reeve, J. N., 1980b, Transposon mutagenesis of the gene encoding the bacteriophage P1 restriction endonuclease. Co-linearity of the gene and gene product, J. Mol. Biol. 144: 387–396.

    CAS  Google Scholar 

  • Heisig, A., Severin, I., Seefluth, A.-K., and Schuster, H., 1987, Regulation of the ban gene containing operon of prophage P1, Mol. Gen. Genet. 206: 368–376.

    PubMed  CAS  Google Scholar 

  • Hertman, I, and Luria, S. E., 1967, Transduction studies on the role of a reck gene in the ultraviolet induction of prophage lambda, J. Mol. Biol. 23: 117–133.

    PubMed  CAS  Google Scholar 

  • Hertman, I., and Scott, J. R., 1973, Recombination of phage P1 in recombination deficient hosts, Virology 53: 468–470.

    PubMed  CAS  Google Scholar 

  • Hiestand-Nauer, R., and Iida, S., 1983, Sequence of the site-specific recombinase gene cinand of its substrates serving in the inversion of the C segment of bacteriophage P1, EMBO J. 2: 1733–1740.

    PubMed  CAS  Google Scholar 

  • Hiraga, S., 1986, Mechanisms of stable plasmid inheritance, Adv. Biophys. 21: 91–103.

    PubMed  CAS  Google Scholar 

  • Hiraga, S., Ogura, T., Mori, H., and Tanaka, M., 1985, Mechanisms essential for stable inheritance of mini-F plasmid, in: Plasmids in Bacteria, ( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 469–487, Plenum Press, New York.

    Google Scholar 

  • Hiraga, S., Jaffe, A., Ogura, T., Mori, H., and Takahashi, H., 1986, F plasmid ccdmechanism in Escherichia coli, J. Bacteriol. 166: 100–104.

    PubMed  CAS  Google Scholar 

  • Hochman, L., Segev, N., Sternberg, N., and Cohen, G., 1983, Site-specific recombinational circularization of bacteriophage Pl DNA, Virology 131: 11–17.

    PubMed  CAS  Google Scholar 

  • Hochschild, A., and Ptashne, M., 1986, Cooperative binding of X repressors to sites separated by integral turns of the DNA helix, Cell 44: 681–687.

    PubMed  CAS  Google Scholar 

  • Hoess, R., and Abremski, K., 1984, Interaction of the bacteriophage PI recombinase Cre with the recombining site IoxP, Proc. Natl. Acad. Sci. USA 81: 1026–1029.

    PubMed  CAS  Google Scholar 

  • Hoess, R., and Abremski, K., 1985, Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system, J. Mol. Biol. 181: 351–362.

    PubMed  CAS  Google Scholar 

  • Hoess, R. H., Ziese, M., and Sternberg, N., 1982, P1 site-specific recombination: Nucleotide sequence of the recombining sites, Proc. Natl. Acad. Sci. USA 79: 3398–3402.

    PubMed  CAS  Google Scholar 

  • Hoess, R. H., Abremski, K., and Sternberg, N., 1984, The nature of the interaction of the P1 recombinase Cre with the recombining site loxP, Cold Spring Harbor Symp. Quant. Biol. 49: 761–769.

    PubMed  CAS  Google Scholar 

  • Hoess, R. H., Wierzbicki, A., and Abremski, K., 1986, The role of the loxPspacer region in Pl site-specific recombination, Nucleic Acids Res. 14: 2287–2300.

    PubMed  CAS  Google Scholar 

  • Hooper, D. C., Wolfson, J. S., McHugh, G. L., Swartz, M. D., Tung, C., and Swartz, M. N., 1984, Elimination of plasmid pMG110 from Escherichia coliby novobiocirt and other inhibitors of DNA gyrase, Antimicrob. Agents Chemother. 25: 586–590.

    PubMed  CAS  Google Scholar 

  • Hooper, I., Woods, W. H., and Egan, B., 1981, Coliphage 186 replication is delayed when the host cell is UV irradiated before induction, J. Virol. 40: 341–349.

    PubMed  CAS  Google Scholar 

  • Horiuchi, K., and Zinder, N., 1972, Cleavage of bacteriophage fl DNA by the restriction enzyme of Escherichia coliB, Proc. Natl. Acad. Sci. USA 69: 3220–3224.

    PubMed  CAS  Google Scholar 

  • Hu, M., and Deonier, R. C., 1981, Mapping of ISl elements flanking the argFgene region on the Escherichia coliK12 chromosome, Mol. Gen. Genet. 181: 222–229.

    PubMed  CAS  Google Scholar 

  • Huber, H. E., Iida, S., and Bickle, T. A., 1985a, Expression of the bacteriophage P1 cinrecombinase gene from its own and heterologous promoters, Gene 34: 63–72.

    CAS  Google Scholar 

  • Huber, H. E., Iida, S., Arber, W., and Bickle, T. A., 1985b, Site-specific DNA inversion is enhanced by a DNA sequence element in cis, Proc. Natl. Acad. Sci. USA 82: 3776–3780.

    CAS  Google Scholar 

  • Hughes, P., Squali-Houssaini, F.-Z., Forterre, P., and Kohiyama, M., 1984, In vitroreplication of a dammethylated and non-methylated on-C plasmid, J. Mol. Biol. 176: 155–159.

    CAS  Google Scholar 

  • Huisman, O., D’Ari, R., and George, J., 1980, Inducible sfidependent division inhibition in Escherichia coli, Mol. Gen. Genet. 177: 629–636.

    PubMed  CAS  Google Scholar 

  • Hmberlin, M., Suri, B., Rao, D. N., Hornby, D. P., Eberle, H., Pripfl, T., and Bickle, T. A., 1988, The type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon and of the EcoP15 gene, J. Mol. Biot in apress).

    Google Scholar 

  • Iida, S., 1984, Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome, Virology 134: 421–434.

    PubMed  CAS  Google Scholar 

  • Iida, S., and Arber, W., 1977, Plaque forming specialized transducing phage P1: Isolation of PICmSmSu, a precursor of P1 Cm, Mol. Gen. Genet. 153: 259–269.

    PubMed  CAS  Google Scholar 

  • Iida, S., and Arber, W., 1979, Multiple physical differences in the genome structure of functionally related bacteriophages P1 and P7, Mol. Gen. Genet. 173: 249–261.

    PubMed  CAS  Google Scholar 

  • Iida, S., and Arber, W., 1980, On the role of IS1 in the formation of hybrids between bacteriophage P1 and the R plasmid NR1, Mol. Gen. Genet. 177: 261–270.

    PubMed  CAS  Google Scholar 

  • Iida, S., and Hiestand-Nauer, R., 1986, Localized conversion at the crossover sequences in the site-specific DNA inversion system of bacteriophage P1, Cell 45: 71–79.

    PubMed  CAS  Google Scholar 

  • Lida, S., and Hiestand-Nauer, R., 1987, Role of the central dinucleotide at the crossover sites for the selection of quasi sites in DNA inversion mediated by the site-specific Cin recombinase of phage P1, Mol. Gen. Genet. 208: 464–468.

    Google Scholar 

  • Iida, S., Meyer, J., and Arber, W., 1978, The insertion element Isl is a natural constituent of coliphage P1 DNA, Plasmid 1: 357–365.

    PubMed  CAS  Google Scholar 

  • Iida, S., Meyer, J., and Arber, W., 1981, Cointegrates between bacteriophage P1 DNA and plasmid pBR322 derivatives suggest molecular mechanisms for P1-mediated transduction of small plasmids, Mol. Gen. Genet. 184: 1–10.

    PubMed  CAS  Google Scholar 

  • Iida, S., Meyer, J., Kennedy, K. E., and Arber, W., 1982, A site-specific conservative recombination system carried by bacteriophage Pl. Mapping the recombinase gene cinand the crossover sites cixfor the inversion of the C segment, EMBO J. 1: 1445–1453.

    PubMed  CAS  Google Scholar 

  • Iida, S., Meyer, J., Bächi, B., Stâlhammer-Carlemalm, M., Schrickel, S., Bickle, T. A., and Arber, W., 1983, DNA restriction-modification genes of phage P1 and plasmid p15B. Structure and in vitrotranscription, J. Mol. Biol. 165: 1–18.

    PubMed  CAS  Google Scholar 

  • Iida, S., Huber, H., Hiestand-Nauer, R., Meyer, J., Sickle, T. A., and Arber, W., 1984, The bacteriophage P 1 site-specific recombinase CM: Recombination events and DNA recognition sequences, Cold Spring Harbor Symp. Quant. Biol. 49: 769–777.

    PubMed  CAS  Google Scholar 

  • Iida, S., Meyer, J., and Arber, W., 1985a, Bacteriophage P1 derivatives unaffected in their growth by a large inversion or by IS insertions at various locations, J. Gen. Microbiol. 131: 129–134.

    CAS  Google Scholar 

  • Iida, S., Hiestand-Nauer, R., Meyer, J., and Arber, W., 1985b, Crossover sites cixfor inversion of the invertible DNA segment C on the bacteriophage P7 genome, Virology 143: 347–351.

    CAS  Google Scholar 

  • Iida, S., Streift, M. B., Bickle, T. A., and Arber, W., 1987, Two DNA anti-restriction systems of bacteriophage Pl, darAand darB: Characterization of darA-phage, Virology, 157: 156–166.

    PubMed  CAS  Google Scholar 

  • Ikeda, H., and Tomizawa, J.-I., 1965a, Transducing fragments in generalized transduction by P1. I. Molecular origin of the fragments, J. Mol. Biol. 14: 85–109.

    CAS  Google Scholar 

  • Ikeda, H., and Tomizawa, J.-I., 1965b, Transducing fragments in generalized transduction by phage Pl. II. Association of DNA and protein in the fragments, J. Mol. Biol. 14: 110–119.

    CAS  Google Scholar 

  • Ikeda, H., and Tomizawa, J.-I., 1965c, Transducing fragments in generalized transduction by phage P1. III. Studies with small phage particles. J. Mol. Biol. 14: 120–129.

    CAS  Google Scholar 

  • Ikeda, H., and Tomizawa, J.-I., 1968, Prophage P1, an extrachromosomal replication unit, Cold Spring Harbor Symp. Quant. Biol. 33: 791–798.

    PubMed  CAS  Google Scholar 

  • Ikeda, H., Inuzuka, M., and Tomizawa, J.-I., 1970, P1-like plasmid in Escherichia coli, J. Mol. Biol. 50: 457–470.

    PubMed  CAS  Google Scholar 

  • Inselberg, J., 1966, Phage P1 modification of bacterial DNA studied by generalized transduction, Virology 30: 257–265.

    Google Scholar 

  • Inselberg, J., 1968, Physical evidence for the integration of prophage P1 into the Escherichia colichromosome, J. Mol. Biol. 31: 553–560.

    Google Scholar 

  • Itoh, Y., Kamio, Y., and Terawaki, Y., 1987, The essential DNA sequence for the replication of Rtsl, J. Bacteriol., 169: 1153–1160.

    PubMed  CAS  Google Scholar 

  • Jacob, F., 1955, Transduction of lysogeny in Escherichia coli, Virology 1: 207–220.

    PubMed  CAS  Google Scholar 

  • Jacob, F., and Wollman, E. L., 1959, The relationship between the prophage and the bacterial chromosome in lysogenic bacteria, in: Recent Progress in Microbiology (G. Tunevall, ed.), pp. 15–30. Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Jacob, F., and Wollman, E. L., 1961, Sexuality and the Genetics of Bacteria, Academic Press, New York.

    Google Scholar 

  • Jacob, F., Brenner, S., and Cuzin, F., 1963, On the regulation of DNA replication in bacteria, Cold Spring Harbor Symp. Quant. Biol. 28: 329–347.

    CAS  Google Scholar 

  • Jaffé, A., Ogura, T., and Hiraga, S., 1985, Effects of the ccdfunction of the F plasmid on bacterial growth, J. Bacteriol. 163: 841–849.

    PubMed  Google Scholar 

  • Jaffé-Brachet, A., and Briaux-Gerbaud, S., 1981, Curing of P1 prophage from Escherichia coliK-12 recA(P1)lysogens superinfected with P1 bacteriophage, J. Virol. 37: 854–859.

    PubMed  Google Scholar 

  • Jaffé-Brachet, A., and D’Ari, R., 1977, Maintenance of bacteriophage P1 plasmid, J. Virol. 23: 476–482.

    PubMed  Google Scholar 

  • Johnson, B. F., 1982, Suppression of the lexC (ssbA)mutation of Escherichia coliby a mutant of bacteriophage P1, Mol. Gen. Genet. 186: 122–126.

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., Bruist, M. F., and Simon, M., 1986, Host protein requirements for in vivosite-specific DNA inversion, Cell 46: 531–539.

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., and Simon, M. I., 1985, Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer, Cell 41: 781–791.

    PubMed  CAS  Google Scholar 

  • Kahmann, R., Rudt, F., Koch, C., and Mertens, G., 1985, G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor, Cell 41: 771–780.

    PubMed  CAS  Google Scholar 

  • Kaiser, D., and Dworkin, M., 1975, Gene transfer to a myxobacterium by Escherichia coliphage P1, Science 187: 653–654.

    PubMed  CAS  Google Scholar 

  • Kamio, Y., Tabuchi, A., Itoh, Y., Katagiri, H., and Terawaki, Y., 1984, Complete nucleotide sequence of mini-Rtsl and its copy mutant, J. Bacteriol. 158: 307–312.

    PubMed  CAS  Google Scholar 

  • Kamp, D., Kahmann, R., Zipser, D., Broker, T. R., and Chow, L. T., 1978, Inversion of the G DNA segment of phage Mu controls phage infectivity, Nature 271: 577–580.

    PubMed  CAS  Google Scholar 

  • Kamp, D., Kardas, E., Ritthaler, W., Sandulache, R., Schmucker, R., and Stem, B., 1984, Comparative analysis of invertible DNA in phage genomes, Cold Spring Harbor Symp. Quant. Biol. 49: 301–311.

    PubMed  CAS  Google Scholar 

  • Karamata, D., 1970, Multiple density classes of phage P1 due to tetramer formation, Mol. Gen. Genet. 107: 243–255.

    Google Scholar 

  • Karoui, H., Bex, F., Drèze, P., and Couturier, M., 1983, Ham22, a mini-F mutation which is lethal to host cell and promotes recA-dependent induction of lambdoid prophage, EMBO J. 2: 1863–1868.

    PubMed  CAS  Google Scholar 

  • Kass, L. R., and Yarmolinsky, M. B., 1970, Segregation of functional sex factor into mini-cells, Proc. Natl. Acad. Sci. USA 66: 815–822.

    PubMed  CAS  Google Scholar 

  • Kennedy, K. E., Iida, S., Meyer, J., Stâlhammer-Carlemalm, M., Hiestand-Nauer, R., and Arber, W., 1983, Genome fusion mediated by the site-specific DNA inversion system of bacteriophage P1, Mol. Gen. Genet. 189: 413–421.

    PubMed  CAS  Google Scholar 

  • Kline, B. C., 1985, A review of mini-F plasmid maintenance, Plasmid 14: 1–16.

    PubMed  CAS  Google Scholar 

  • Kline, B. C., Miller, J. R., Cress, D. E., Wlodarszyk, M., Manis, J. J., and Otten, M. R., 1976, Non-integrated plasmid-chromosome complexes in Escherichia coli, J. Bacteriol. 127: 881–889.

    PubMed  CAS  Google Scholar 

  • Komano, T., Kubo, A., Kayanuma, T., Furuichi, T., and Nisioka, T., 1986, Highly mobile DNA segment of Inela plasmid R64: A clustered inversion region, J. Bacteriol. 165: 94–100.

    PubMed  CAS  Google Scholar 

  • Kondo, E., and Mitsuhashi, S., 1964, Drug resistance of enteric bacteria. IV. Active transducing bacteriophage P1CM produced by the combination of R-factor with bacteriophage P1, J. Bacteriol. 88: 1266–1276.

    PubMed  CAS  Google Scholar 

  • Kondo, E., and Mitsuhashi, S., 1966, Drug resistance of enteric bacteria. VI. Introduction of bacteriophage P1CM into Salmonella typhi and formation of P1dCM and F-CM elements, J. Bacteriol. 91: 1787–1794.

    PubMed  CAS  Google Scholar 

  • Kondo, E., Haapala, D. K., and Falkow, S., 1970, The production of chloramphenicol acetyltransferase by bacteriophage P1CM, Virology 40: 431–440.

    PubMed  CAS  Google Scholar 

  • Konrad, E. B., 1977, Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications, J. Bacteriol. 130: 167–172.

    PubMed  CAS  Google Scholar 

  • Krüger, D. H., and Bickle, T. A., 1983, Bacterial survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts, Microbiol. Rev. 47: 345–360.

    PubMed  Google Scholar 

  • Kuner, J. M., and Kaiser, D., 1981, Introduction of transposon Tn5 into Myxococcusfor analysis of development and other nonselectable mutants, Proc. Natl. Acad. Sci. USA 78: 425–429.

    PubMed  CAS  Google Scholar 

  • Kusukawa, N., Mori, H., Kondo, A., and Hiraga, S., 1987, Partitioning of the F plasmid: overproduction of an essential protein for partition inhibits plasmid maintenance, Mol. Gen. Genet. 208: 365–372.

    PubMed  CAS  Google Scholar 

  • Kutsukake, K., and Iino, T., 1980, Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu, Proc. Natl. Acad. Sci. USA 77: 7338–7341.

    CAS  Google Scholar 

  • Lane, D., and Gardner, R. C., 1979, Second EcoRI fragment of F capable of self-replication, J. Bacteriol. 139: 141–151.

    PubMed  CAS  Google Scholar 

  • Lane, D., Hill, D., Caughey, E., and Gunn, P., 1984, The mini-F primary origin. Sequence analysis and multiple activities, J. Mol. Biol. 180: 267–282.

    PubMed  CAS  Google Scholar 

  • Lanka, E., and Schuster, H., 1970, Replication of bacteriophages in E. coli mutants thermosensitive in DNA synthesis, Mol. Gen. Genet. 106: 279–285.

    Google Scholar 

  • Lanka, E., Edelbluth, C., Schlicht, M., and Schuster, H., 1978a, Escherichia coli dnaB protein, J. Biol. Chem. 253: 5847–5851.

    CAS  Google Scholar 

  • Lanka, E., Mikolajczyk, M., Schlicht, M., and Schuster, H., 1978b, Association of the pro-phage Plban protein with the dnaB protein of Escherichia coli, J. Biol. Chem. 253: 4746–4753.

    CAS  Google Scholar 

  • Lanka, E., Schlicht, M., Mikolajczyk, M., Geschke, B., Edelbluth, C., and Schuster, H., 1978e, Suppression of E. coli dnaBmutants by prophage Plbac: A biochemical approach, in: DNA Synthesis: Present and Future (I. Molineux and M. Kohiyama, eds.), pp. 669–682, Plenum Press, New York.

    Google Scholar 

  • Lawton, W. D., and Molnar, D. M., 1972, Lysogenic conversion of Pasteurellaby Escherichia colibacteriophage P1CM, J. Virol. 9: 708–709.

    PubMed  CAS  Google Scholar 

  • Lederberg, J., 1956, Linear inheritance in transductional clones, Genetics 41: 845–871.

    PubMed  CAS  Google Scholar 

  • Lederberg, S., 1957, Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria, Virology 3: 496–513.

    PubMed  CAS  Google Scholar 

  • Lee, H.-J., Ohtsubo, E., Deonier, R. C., and Davidson, N., 1974, Electron microscope hetero-duplex studies of sequence relations among plasmids of Escherichia coli. V. ilv+ deletion mutants of F14, J. Mol. Biol. 89: 585–597.

    PubMed  CAS  Google Scholar 

  • Lennox, E. S., 1955, Transduction of linked genetic characters of the host by bacteriophage P1, Virology 1: 190–206.

    PubMed  CAS  Google Scholar 

  • Leonard, A. C., Hucul, J. A., Helmstetter, C. E., 1982, Kinetics of mini-chromosome replication in Escherichia coli B/r, J. Bacteriol. 149: 499–507.

    PubMed  CAS  Google Scholar 

  • Levine, M., Truesdale, S., Ramakrishnan, T., and Bronson, M. J., 1975, Dual control of lysogeny by phage P22, J. Mol. Biol. 91: 421–438.

    PubMed  CAS  Google Scholar 

  • Lewin, R., 1984, Why is development so illogical? Science224:1327–1329. Lindberg, A. A., 1973, Bacteriophage receptors, Ann. Rev. Genet. 27: 205–241.

    Google Scholar 

  • Linder, P., Churchward, G., Yi-Yi, X. G. Y., and Caro, L., 1985, An essential replication gene, repA, of plasmid pSC101 is autoregulated, J. Mol. Biol. 181: 383–393.

    PubMed  CAS  Google Scholar 

  • Linn, S., and Arber, W., 1968, Host specificity of DNA produced by Escherichia coliX. In vitrorestriction of phage fd replicative form, Proc. Natl. Acad. Sci. USA 59: 1300–1306.

    PubMed  CAS  Google Scholar 

  • Little, J. N., and Mount, D. W., 1982, The SOS regulatory system of Escherichia coli, Cell 29: 11–13.

    PubMed  CAS  Google Scholar 

  • Luderitz, O., Jann, K., and Wheat, R., 1968, Somatic and capsular antigens of gram-negative bacteria, Comprehensive Biochem. 26A: 105–228.

    Google Scholar 

  • Ludtke, D. N., and Austin, S. J., 1987, The plasmid-maintenance functions of P7 prophage, Plasmid, 18: 93–98.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., Adams, J. N., and Ting, R. C., 1960, Transduction of lactose-utilizing ability among strains of E. coliand Sh. dysenteriaeand the properties of the transducing phage particles, Virology 12: 348–390.

    PubMed  CAS  Google Scholar 

  • Lyons, S. M., and Schendel, P. F., 1984, Kinetics of methylation in Escherichia coli K12, J. Bacteriol. 159: 421–423.

    PubMed  CAS  Google Scholar 

  • MacHattie, L. A., and Jackowski, J. B., 1976, Physical structure and deletion effects of the chloramphenicol-resistance element, Tn9, in phage lambda, in: DNA Insertion Elements, Plasmids and Episomes( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 219–228, Cold Spring Harbor Laboratory, Cold Spring Harbor, NewYork.

    Google Scholar 

  • MacQueen, H. A., and Donachie, W. D., 1977, Intracellular localization and effects on cell division of a plasmid blocked in deoxyribonucleic acid replication, J. Bacteriol. 132: 392–397.

    PubMed  CAS  Google Scholar 

  • Majumdar, A., and Adhya, S. L., 1984, Demonstration of two operator elements in gal: In vitro repressor binding studies, Proc. Natl. Acad. Sci. USA 81: 6100–6104.

    CAS  Google Scholar 

  • Margolin, P., 1987, Generalized transduction, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology(F. C. Neidhardt, ed.), American Society for Microbiology, Washington, Vol. 2, pp. 1154–1168.

    Google Scholar 

  • Marinus, M. G., 1984, Methylation of prokaryotic DNA, in: DNA Methylation( A Razin, M. Cedar, and A. Riggs, eds.), pp. 81–109, Springer-Verlag, New York.

    Google Scholar 

  • Marinus, M. G., 1987, DNA methylation in Escherichia coli, Ann. Rev. Genet. 21: 113–131.

    PubMed  CAS  Google Scholar 

  • Martin, K. A., Friedman, S. A., and Austin, S. J., 1987, The partition site of the PI plasmid, Proc. Natl. Acad. Sci., USA 84: 8544–8547.

    CAS  Google Scholar 

  • Masters, M., 1977, The frequency of P1 transduction of the genes of Escherichia colias a function of chromosomal position: Preferential transduction of the origin of replication, Mol. Gen. Genet. 155: 197–202.

    PubMed  CAS  Google Scholar 

  • Masters, M., 1985, Generalized transduction in: The Genetics of Bacteria(J. G. Scaife, D. Leach, and A. Galizzi, eds.), pp. 197–215, Academic Press, New York.

    Google Scholar 

  • Masters, M., Newman, B. J., and Henry, C. M., 1984, Reduction of marker discrimination in transductional recombination, Mol. Gen. Genet. 196: 85–90.

    PubMed  CAS  Google Scholar 

  • Matsubara, K., 1981, Replication control system in lambda dv, Plasmid 5: 32–52.

    PubMed  CAS  Google Scholar 

  • Mattes, R., 1985, Habilitationsschrift, University of Regensburg, Regensburg, F.R.G., 1985.

    Google Scholar 

  • Meselson, M., and Yuan, R., 1968, DNA restriction enzyme from E. coli, Nature 217: 1110–1114.

    CAS  Google Scholar 

  • Messer, W., Bellekes, U., and Lother, H., 1985, Effect of dammethylation on the activity of the E. colireplication origin, oriC, EMBO I. 4: 1327–1332.

    CAS  Google Scholar 

  • Meurs, E., and D’Ari, R., 1979, Prophage substitution and prophage loss from superinfected Escherichia coli recA(Pl) lysogens, 1. Virol. 31: 277–280.

    CAS  Google Scholar 

  • Meyer, J., and Iida, S., 1979, Amplification of chloramphenicol resistance transposons carried by phage PI Cm in Escherichia coli, Mol. Gen. Genet. 176: 209–219.

    CAS  Google Scholar 

  • Meyer, J., Stâlhammar-Carlemalm, M., and Iida, S., 1981, Denaturation map of bacteriophage P1 DNA, Virology 110: 167–175.

    PubMed  CAS  Google Scholar 

  • Meyer, J., Iida, S., and Arber, W., 1983, Physical analysis of the genomes of hybrid phages between phage P1 and plasmid pl5B. Mol. Biol. 165: 191–195.

    CAS  Google Scholar 

  • Meyer, J., Stâlhammer-Carlemalm, M., Streiff, M., Iida, S., and Arber, W., 1986, Sequence relations among the IncY plasmids p15B, Pl and P7 prophages, Plasmid 16: 81–89.

    PubMed  CAS  Google Scholar 

  • Meyers, D. E., and Landy, A., 1973, The role of host RNA polymerase in P1 phage development, Virology 51: 521–524.

    Google Scholar 

  • Miki, T., Chang, Z. T., and Horiuchi, T., 1984a, Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42,84–43.6 F segment, I. Mol. Biol. 174: 627–646.

    CAS  Google Scholar 

  • Miki, T., Yoshioka, K., and Horiuchi, T., 1984b, Control of cell division by sex factor F in Escherichia coli. I. The 42.84–43.6 F segment couples cell division of the host bacteria with replication of plasmid DNA. Mol. Biol. 174: 605–625.

    CAS  Google Scholar 

  • Miller, J. F., and Malamy, M. H., 1983, Identification of the pifCgene and its role in negative control of F factor pifgene expression. Bacteriol. 156: 338–347.

    CAS  Google Scholar 

  • Miller, J. H., 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Mise, K., 1971, Isolation and characterization of a new generalized transducing bacteriophage different from P1 in Escherichia coli, I. Virol. 7: 168–175.

    CAS  Google Scholar 

  • Mise, K., 1980, New recombinant prophages between bacteriophage P1 and the R plasmid NR1, in: Antibiotic Resistance. Transposition and Other Mechanisms( S. Mitsuhashi, L. Rosival, and V. Krcmery, eds.), pp. 77–81, Springer-Verlag, Berlin.

    Google Scholar 

  • Mise, K., and Arber, W., 1975, Bacteriophage P1 carrying drug resistance genes of the R factor NR1, in: Microbial Drug Resistance( S. Mitsuhashi and H. Hashimoto, eds.), pp. 165–167, University Park Press, Baltimore.

    Google Scholar 

  • Mise, K., and Arber, W., 1976, Plaque-forming transducing bacteriophage P1 derivatives and their behaviour in lysogenic conditions, Virology 69: 191–205.

    PubMed  CAS  Google Scholar 

  • Mise, K., and Suzuki, K., 1970, New generalized transducing bacteriophage in Escherichia coli, J. Virol. 6: 253–255.

    CAS  Google Scholar 

  • Mise, K., Kawai, M., Yoshida, Y., and Nakamura, A., 1981, Characterization of bacteriophage j2 of Salmonella typhias a generalized transducing phage closely related to coliphage P1, /. Gen. Microbiol. 126: 321–326.

    CAS  Google Scholar 

  • Mise, K., Yoshida, Y., and Kawai, M., 1983, Generalized transduction between Salmonella typhiand Salmonella typhimuriumby phage j2 and characterization of the j2 plasmid in Escherichia coli, 1. Gen. Microbiol. 129: 3395–3400.

    CAS  Google Scholar 

  • Mori, H., Ogura, T., and Hiraga, S., 1984, Prophage X induction caused by mini-F plasmid genes, Mol. Gen. Genet. 196: 185–193.

    PubMed  CAS  Google Scholar 

  • Mori, H., Kondo, A., Ohshima, A., Ogura, T., and Hiraga, S., 1986, Structure and function of the F plasmid genes essential for partitioning, 1. Mol. Biol. 192: 1–15.

    CAS  Google Scholar 

  • Moriya, S., Ogasawara, N., and Yoshikawa, H., 1985, Structure and function of the region of the replication origin of the Bacillus subtilischromosome. III. Nucleic acid sequence of some 10,000 base pairs in the origin region, Nucleic Acids Res. 13: 2251–2265.

    PubMed  CAS  Google Scholar 

  • Murakami, Y., Ohmori, H., Yura, T., and Nagata, T., 1987, Requirement of the E. coli dnaAgene function for on-2 dependent mini-F plasmid replication, /. Bacteriol. 169: 1724–1730.

    CAS  Google Scholar 

  • Mural, R. J., 1978, Transcription of bacteriophage P1, PhD thesis, University of Georgia, Athens.

    Google Scholar 

  • Mural, R. J., Chesney, R. H., Vapnek, D., Kropf, M. M., and Scott, J. R., 1979, Isolation and characterization of cloned fragments of bacteriophage P1 DNA, Virology 93: 387–397.

    PubMed  CAS  Google Scholar 

  • Murialdo, H., and Becker, A., 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages, Microbiol. Rev. 42: 529–576.

    PubMed  CAS  Google Scholar 

  • Murooka, Y., and Harada, T., 1979, Expansion of the host range of coliphage P1 and gene transfer from enteric bacteria to other gram-negative bacteria, Appl. Environ. Microbiol. 38: 754–757.

    PubMed  CAS  Google Scholar 

  • Murotsu, T., Tsutsui, H., and Matsubara, K., 1984, Identification of the minimal essential region for the replication origin of miniF plasmid, Mol. Gen. Genet., 196: 373–378.

    PubMed  CAS  Google Scholar 

  • Nainen, O., 1975, Ph.D. thesis, University of Georgia, Athens.

    Google Scholar 

  • Neidhardt, F. C., VanBogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18: 295–329.

    PubMed  CAS  Google Scholar 

  • Newman, B. J., and Masters, M., 1980, The variation in frequency with which markers are transduced by phage P1 is primarily a result of discrimination during recombination, Mol. Gen. Genet. 180: 585–589.

    PubMed  CAS  Google Scholar 

  • Nordstrom, K., 1933, Replication of plasmid R1: Meselson-Stahl density shift experiments revisited, Plasmid 9: 218–221.

    Google Scholar 

  • Nordstrom, K., 1985a, Chairman’s introduction: Replication, incompatibility and partition, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 119–123, Plenum Press, New York.

    Google Scholar 

  • Nordstrom, K., 1985b, Control of plasmid replication: Theoretical considerations and practical solutions, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 189–214, Plenum Press, New York.

    Google Scholar 

  • Novick, R. P., and Hoppenstaedt, F. C., 1978, On plasmid incompatibility, Plasmid 1: 421–434.

    PubMed  CAS  Google Scholar 

  • Novick, R. P., Clowes, R. C., Cohen, S. N., Curtis, R. III, Datta, N., and Falkow, S., 1976, Uniform nomenclature for bacterial plasmids: A proposal, Bacteriol. Rev. 40: 168–189.

    PubMed  CAS  Google Scholar 

  • O’Connor, K. A., and Zusman, D. R., 1983, Coliphage P1-mediated transduction of cloned DNA from Escherichia colito Myxococcus xanthus: Use for complementation and recombinational analyses, /. Bacteriol. 155: 317–329.

    Google Scholar 

  • O’Connor, M. B., Kilbane, J. J., and Malamy, M. H., 1986, Site-specific and illegitimate recombination in the oriV1region of the F factor, I. Mol. Biol. 189: 85–102.

    Google Scholar 

  • Oeschger, M. P., and Wiprud, G. T., 1980, High efficiency temperature-sensitive amber suppressor strains of Escherichia coliK12: Construction and characterization of recombinant strains with suppressor-enhancing mutations, Mol. Gen. Genet. 178: 293–299.

    PubMed  CAS  Google Scholar 

  • Ogawa, T., 1975, Analysis of the dnaBfunction of Escherichia colistrain K12 and the dnaB-likefunction of P1 prophage, /. Mol. Biol. 94: 327–340.

    CAS  Google Scholar 

  • Ogawa, T., Baker, T. A., Van der Ende, A., and Kornberg, A., 1985, Initiation of enzymatic replication at the origin of the Escherichia colichromosome: Primase as the sole priming enzyme, Proc. Natl. Acad. Sci. USA 82: 3562–3566.

    PubMed  CAS  Google Scholar 

  • Ogura, T., and Hiragi., S., 1983a, Mini-F plasmid genes that couple host cell division to plasmid proliferation, Proc. Natl. Acad. Sci. USA 80: 4784–4788.

    CAS  Google Scholar 

  • Ogura, T., and Hiraga, S., 1983b, Partition mechanism of F plasmid: Two plasmid geneencoded products and a cis-acting region are involved in partition, Cell 32: 351–360.

    CAS  Google Scholar 

  • Ohtsubo, H., and Ohtsubo, E., 1978, Nucleotide sequence of an insertion element, IS1, Proc. Natl. Acad. Sci. USA 75: 615–619.

    PubMed  CAS  Google Scholar 

  • Okada, M., and Watanabe, T., 1968, Transduction with phage PI in Salmonella typhimurium, Nature 218: 185–187.

    CAS  Google Scholar 

  • O’Regan, G. T., Sternberg, N. L., and Cohen, G., 1987, Construction of an ordered, overlapping, library of bacteriophage Pl DNA in XD69, Gene 60: 129–135.

    PubMed  Google Scholar 

  • Ornellas, E. P., and Stocker, B. A. D., 1974, Relation of lipopolysaccharide character to phage P1 sensitivity in Salmonella typhimurium, Virology 60: 491–502.

    CAS  Google Scholar 

  • Ozeki, H., 1956, Abortive transduction, Carnegie Inst. of Washington, Yearbook 55: 302–303.

    Google Scholar 

  • Ozeki, H., 1959, Chromosome fragments participating in transduction in Salmonella typhimurium, Genetics 44: 457–470.

    CAS  Google Scholar 

  • Pabo, C. O., and Sauer, K. T., 1984, Protein-DNA recognition, Annu. Rev. Biochem. 53: 293–321.

    PubMed  CAS  Google Scholar 

  • Pal, S. K., and Chattoraj, D. K., 1986, RepA is rate limiting for P 1 plasmid replication, in: Mechanisms of DNA Replication and RecombinationUCLA Symposium on Molecular and Cellular Biology, New Series (T. Kelly and R. McMacken, eds.), Vol. 47, pp. 441450, Alan R. Liss, New York.

    Google Scholar 

  • Pal, S. K., Mason, R. J., and Chattoraj, D. K., 1986, Pl plasmid replication: Role of initiator titration in copy number control, J. Mol. Biol. 192: 275–285.

    PubMed  CAS  Google Scholar 

  • Petrillo, L. A., Gallagher, P. J., and Elseviers, D., 1983, The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli, Mol. Gen. Genet. 190: 289–294.

    Google Scholar 

  • Plasterk, R. H. A., Brinkman, A., and Van de Putte, P., 1983, DNA inversions in the chromosome of Escherichia coliand in bacteriophage Mu: Relationship to other site-specific recombination systems, Proc. Natl. Acad. Sci. USA 80: 5355–5358.

    PubMed  CAS  Google Scholar 

  • Plasterk, R. H. A., and Van de Putte, P., 1984, Genetic switches by DNA inversions in prokaryotes, Biochim. Biophys. Acta 782: 111–119.

    PubMed  CAS  Google Scholar 

  • Porter, R. D., McLaughlin, T., and Low, B., 1978, Transduction versus “conjugation.” Evidence for multiple roles for exonuclease V in genetic recombination in Escherichia coli, Cold Spring Harbor Symp. Quant. Biol. 43: 1043–1048.

    Google Scholar 

  • Prehm, P., Schmidt, G., Jann, B., and Jann, K., 1976, The cell wall lipopolysaccharide of Escherichia coli K12, Eur. J. Biochem. 56: 41–55.

    Google Scholar 

  • Prentki, P., Chandler, M., and Caro, L., 1977, Replication of the prophage P1 during the cell cycle of Escherichia cola, Mol. Gen. Genet. 152: 71–76.

    PubMed  CAS  Google Scholar 

  • Pritchard, R. H., 1978, Control of DNA replication in bacteria, in: NATO Advanced Study Series A: Life Sciences. DNA Synthesis: Present and Future ( I. Molineux and M. Kohiyama, eds.), pp. 1–26, Plenum Press, New York.

    Google Scholar 

  • Pritchard, R. H., Barth, P. T., and Collins, J., 1969, Control of DNA synthesis in bacteria, Symp. Soc. Gen. Microbiol. 19: 263–297.

    Google Scholar 

  • Rae, M. E., and Stodolsky, M., 1974, Chromosome breakage, fusion and reconstruction during Pldl transduction, Virology 58: 32–54.

    PubMed  CAS  Google Scholar 

  • Raj, A. S., Raj, A. Y., and Schmieger, H., 1974, Phage genes involved in the formation of generalized transducing particles in Salmonella-phageP22, Mol. Gen. Genet. 135: 175–184.

    PubMed  CAS  Google Scholar 

  • Rashtchian, A., Brown, S. W., Reichler, J., and Levy, S. B., 1986, Plasmid segregation into minicells is associated with membrane attachment and independent of plasmid replication, J. Bacteriol. 165: 82–87.

    PubMed  CAS  Google Scholar 

  • Ravin, V. K., and Golub, E. I., 1967, Study of phage conversion in Escherichia coli. I. Acquisition of resistance to bacteriophage T1 as a result of lysogenization, Genetika 3: 113–121.

    Google Scholar 

  • Ravin, V. K., and Shulga, M. G., 1970, Evidence for extrachromosomal location of prophage N15, Virology 40: 800–807.

    PubMed  CAS  Google Scholar 

  • Rawlins, D. R., Milman, G., Hayward, S. D., and Hayward, G. S., 1985, Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-11 to clustered sites in the plasmid maintenance region, Cell 42: 859–868.

    PubMed  CAS  Google Scholar 

  • Razza, J. B., Watkins, C. A., and Scott, J. R., 1980, Phage P1 temperature-sensitive mutants with defects in the lytic pathway, Virology 105: 52–59.

    PubMed  CAS  Google Scholar 

  • Reeve, J. N., Lanka, E., and Schuster, H., 1980, Synthesis of P1 banprotein in minicells infected by Pl mutants, Mol. Gen. Genet. 177: 193–197.

    PubMed  CAS  Google Scholar 

  • Roizman, B., 1979, The structure and isomerization of herpes simplex virus genomes, Cell 16: 481–494.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, S. A., and Brenchley, J. E., 1980, Bacteriophage Pl as a vehicle for Mu muta-genesis of Salmonella typhimurium, J. Bacteriol. 144: 848–851.

    CAS  Google Scholar 

  • Rosner, J. L., 1972, Formation, induction and curing of bacteriophage P1 lysogens, Virology 48: 679–689.

    PubMed  CAS  Google Scholar 

  • Rosner, J. L., 1973, Modification-deficient mutants of bacteriophage Pl. I. Restriction by P1 cryptic lysogens, Virology 52: 213–222.

    PubMed  CAS  Google Scholar 

  • Rosner, J. L., 1975, Specialized transduction of progenes by coliphage P1: Structure of a partly diploid P1-proprophage, Virology 67: 42–55.

    PubMed  CAS  Google Scholar 

  • Sadowski, P., 1986, Site-specific recombinases: Changing partners and doing the twist, I. Bacteriol. 165: 341–347.

    CAS  Google Scholar 

  • Sakaki, Y., 1974, Inactivation of the ATP-dependent DNase of Escherichia coliafter infection with double-stranded DNA phages, I. Virol. 14: 1611–1612.

    CAS  Google Scholar 

  • Sandri, R. M., and Berger, H., 1980a, Bacteriophage P1-mediated generalized transduction in Escherichia coli: Fate of transduced DNA in rec+and recA -recipients, Virology 106: 14–29.

    CAS  Google Scholar 

  • Sandri, R. M., and Berger, H., 1980b, Bacteriophage P1-mediated generalized transduction in Escherichia coli: Structure of abortively transduced DNA, Virology 106: 30–40.

    CAS  Google Scholar 

  • Sandulache, R., Prehm, P., and Kamp, D., 1984, Cell wall receptor for bacteriophage Mu G(+), f. Bacteriol. 160: 299–303.

    CAS  Google Scholar 

  • Sandulache, R., Prehm, P., Expert, D., Toussaint, A., and Kamp, D., 1985, The cell wall receptor for bacteriophage Mu in Erwiniaand E. coliC, FEMS Microbiol. Lett. 28: 307–310.

    CAS  Google Scholar 

  • Schildkraut, C. L., Marmur, J., and Doty, P., 1962, Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCI, I. Mol. Biol. 4: 430–443.

    CAS  Google Scholar 

  • Schmieger, H., 1972, Phage P22 mutants with increased or decreased transduction abilities, Mol. Gen. Genet. 119: 75–88.

    PubMed  CAS  Google Scholar 

  • Schmieger, H., and Backhaus, H., 1976, Altered co-transduction frequencies exhibited by HT-mutants of Salmonellaphage P22, Mol. Gen. Genet. 143: 307–309.

    PubMed  CAS  Google Scholar 

  • Schmitt, R., Mattes, R., Schmid, K., and Altenbuchner, J., 1979, RAF plasmids in strains of Escherichia coliand their possible role in enteropathogeny, in: Plasmids of Medical, Environmental and Commercial Importance in Development in Genetics( K. N. Tim-mis and A. Puhler, eds.), Vol. 1, pp. 199–210, Elsevier-North Holland, Amsterdam.

    Google Scholar 

  • Schulz, G., and Stodolsky, M., 1976, Integration sites of foreign genes in the chromosome of coliphage P1: A finer resolution, Virology 73: 299–302.

    PubMed  CAS  Google Scholar 

  • Schulz, D. W., Taylor, A. F., and Smith, G. R., 1983, Escherichia coliRecBC pseudorevertants lacking Chi recombinational hotspot activity, f. Bacteriol. 155: 664–680.

    Google Scholar 

  • Schuster, H., Mikolajczyk, M., Rohrschneider, J., and Geschke. B., 1975, X174 DNA-dependent DNA synthesis in vitro: Requirement for PI banprotein in dnaBmutant extracts of Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3907–3911.

    CAS  Google Scholar 

  • Schuster, H., Lanka, E., Edelbluth, C., Geschke, B., Mikolajczyk, M., Schlicht, M., and Touati-Schwartz, D., 1978, A dnaB-analog DNA-replication protein of phage P1, Cold Spring Harbor Symp. Quant. Biol. 43: 551–557.

    Google Scholar 

  • Scott, J. R., 1968, Genetic studies on bacteriophage P1, Virology 36: 564–574.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., 1970a, A defective P1 prophage with a chromosomal location, Virology 40: 144–151.

    CAS  Google Scholar 

  • Scott, J. R., 1970b, Clear plaque mutants of phage P1, Virology 41: 66–71.

    CAS  Google Scholar 

  • Scott, J. R., 1972, A new gene controlling lysogeny in phage P1, Virology 48: 282–283.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., 1973, Phage P1 cryptic II. Location and regulation of prophage genes, Virology 53: 327–336.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., 1974, A turbid plaque forming mutant of phage Pl that cannot lysogenize Escherichia coli, Virology 62: 344–349.

    CAS  Google Scholar 

  • Scott, J. R., 1975, Superinfection immunity and prophage repression in phage Pi, Virology 65: 173–178.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., 1980, Immunity and repression in bacteriophages P1 and P7, Curr. Top. Microbiol. Im m un ol. 90: 49–65.

    CAS  Google Scholar 

  • Scott, J. R., 1984, Regulation of plasmid replication, Microbiol. Rev. 48: 1–23.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., and Kropf, M. M., 1977, Location of new clear plaque genes on the P1 map, Virology 82: 362–368.

    PubMed  CAS  Google Scholar 

  • Scott, J. R., and Rownd, R. H., 1980, Workshop summary: Regulation of plasmid replication, in: ICN/UCLA Symposium on Mechanistic Studies of DNA Replication and Genetic Recombination( B. Alberts, ed.), pp. 1–8, Academic Press, New York.

    Google Scholar 

  • Scott, J. R., and Vapnek, D., 1980, Regulation of replication of the P1 plasmid prophage, in: ICN/UCLA Symposium on Mechanistic Studies of DNA Replication and Genetic Recombination( B. Alberts, ed.), pp. 335–345, Academic Press, New York.

    Google Scholar 

  • Scott, J. R., Kropf, M., and Mendelson, L., 1977a, Clear plaque mutants of phage P7, Virology 76: 39–46.

    CAS  Google Scholar 

  • Scott, J. R., Laping, J. L., and Chesney, R. H., 1977b, A phage P1 virulent mutation at a new map location, Virology 78: 346–348.

    CAS  Google Scholar 

  • Scott, J. R., Chesney, R. H., and Novick, R. P., 1978a, Mutant in P1 plasmid maintenance, in: Microbiology 1978 (D. Schlessinger, ed. l, pp. 74–77, American Society for Microbiology, Washington.

    Google Scholar 

  • Scott, J. R., West, B. W., and Laping, J. L., 1978b, Superinfection immunity and prophagc repression in phage Pl. IV. The cl repressor bypass function and the role of c4 repressor in immunity, Virology 85: 587–600.

    CAS  Google Scholar 

  • Scott, J. R., Kropf, M. M., Padolsky, L., Goodspeed, J. K., Davis, R., and Vapnek, D., 1982, Mutants of the plasmid prophage P1 with elevated copy number: Isolation and characterization, I. Bacteriol. 150: 1329–1339.

    CAS  Google Scholar 

  • Segev, N., and Cohen, G., 1981, Control of circularization of bacteriophage P1 DNA in Escherichia coli, Virology 114: 333–342.

    CAS  Google Scholar 

  • Segev, N., Laub, A., and Cohen, G., 1980, A circular form of bacteriophage P1 DNA made in lytically infected cells of Escherichia coli. I. Characterization and kinetics of formation, Virology 101: 261–271.

    PubMed  CAS  Google Scholar 

  • Selvaraj, G., and Iyer, V. N., 1980, A dnaBanalog function specified by bacteriophage P7 and its comparison to the similar function specified by bacteriophage P1, Mol. Gen. Genet. 178: 561–566.

    CAS  Google Scholar 

  • Sengstag, C., and Arber, W., 1983, IS2 insertion is a major cause of spontaneous mutagenesis of the bacteriophage PI: Non-random distribution of target sites, EMBO I. 2: 67–71.

    CAS  Google Scholar 

  • Sengstag, C., and Arber, W., 1987, A cloned DNA fragment from bacteriophage P1 enhances IS2 insertion, Mol. Gen. Genet. 206: 344–351.

    PubMed  CAS  Google Scholar 

  • Sengstag, C., Shepherd, J. C. W., and Arber, W., 1983, The sequence of the bacteriophage P1 genome region serving as hot target for IS2 insertion, EMBO I. 2: 1777–1781.

    CAS  Google Scholar 

  • Shafferman, A., Geller, T., and Hertman, I., 1978, Genetic and physical characterization of Pldlwprophage and its derivatives, Virology 86: 115–126.

    PubMed  CAS  Google Scholar 

  • Shafferman, A., Geller, T., and Hertman, I., 1979, Identification of the Pl compatibility and plasmid maintenance locus by a mini Pl lackplasmid, Virology 96: 32–37.

    PubMed  CAS  Google Scholar 

  • Shapiro, J. A., 1977, Appendix B, in: Bacterial Plasmids in DNA Insertion Elements, Plasmids and Episomes( A. L. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), p. 634, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sherratt, D., Dyson, P., Boocock, M., Brown, L, Summers, D., Stewart, G., and Chan, P., 1984, Site-specific recombination in transposition and plasmid stability, Cold Spring Harbor Symp. Quant. Biol. 49: 227–233.

    PubMed  CAS  Google Scholar 

  • Shields, M. S., Kline, B. C., and Tam, J. E., 1986, A rapid method for the quantitative measurement of gene dosage: Mini-F plasmid concentration as a function of cell growth rate, I. Microbiol. Methods 6: 33–46.

    CAS  Google Scholar 

  • Simon, M., and Silverman, M., 1983, Recombinational regulation of gene expression in bacteria, in: Gene Function in Prokaryotes( J. Beckwith, J. Davies, and J. A. Gallant, eds.), pp. 211–227, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Simon, M., Zieg, J., Silverman, M., Mandel, G., and Doolittle, R., 1980, Phase variation: Evolution of a controlling element, Science 209: 1370–1374.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., Garland, A. M., Herman, G., Enns, R. E., Baker, T. A., and Zyskind, J., 1985, The importance of state of methylation of oriCGATC sites in initiation of DNA replication in Escherichia coli, EMBO I. 4: 1319–1327.

    CAS  Google Scholar 

  • Smith, G. R., 1983, General recombination, in: Lambda II. ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 175–209, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Smith, H. W., 1972, Ampicillin resistance in Escherichia coliby phage infection, Nature New Biol. 238: 205–206.

    PubMed  CAS  Google Scholar 

  • Smith, T. A. G., and Hays, J. B., 1985, Repair and recombination of non-replicating UV-irradiated phage DNA in E. coli. II. Stimulation of RecF-dependent recombination by excision repair of cyclobutane pyrimidine dimers and of other photoproducts, Mol. Gen. Genet. 201: 393–401.

    PubMed  CAS  Google Scholar 

  • Segaard-Anderson, L., Rokeach, L. A., and Molin, S., 1984, Regulated expression of a gene important for replication of plasmid F in E. coli, EMBO J. 3: 257–262.

    Google Scholar 

  • Som, T., Sternberg, N., and Austin, S., 1981, A nonsense mutation in bacteriophage P1 eliminates the synthesis of a protein required for normal plasmid maintenance, Plasmid 5: 150–160.

    PubMed  CAS  Google Scholar 

  • Sommer, S., Bailone, A., and Devoret, R., 1985, SOS induction by thermosensitive replication mutants of miniF plasmid, Mol. Gen. Genet. 198: 456–464.

    PubMed  CAS  Google Scholar 

  • Stahl, F. W., 1979, Specialized sites in generalized recombination, Annu. Rev. Genet. 13: 724.

    Google Scholar 

  • Stalker, D. M., and Helinski, D. R., 1985, DNa segments of the IncX plasmid R485 determining replication incompatibility with plasmid R6K, Plasmid 14: 245–254.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., 1978, Demonstration and analysis of Pl site-specific recombination using X-P1 hybrid phages constructed in vitro, Cold Spring Harbor Symp. Quant. Biol. 43: 1143–1146.

    Google Scholar 

  • Sternberg, N., 1979, A characterization of bacteriophage P1 DNA fragments cloned in a lambda vector, Virology 96: 129–142.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., 1981, Bacteriophage P1 site-specific recombination. III. Strand exchange during recombination at loxsites, J. Mol. Biol., 150: 603–608.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., 1985, Evidence that adenine methylation influences DNA-protein interactions in Escherichia coli, J. Bacteriol. 164: 490–493.

    CAS  Google Scholar 

  • Sternberg, N., and Austin, S., 1981, The maintenance of the P1 plasmid prophage, Plasmid 5: 20–31.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Austin, S., 1983, Isolation and characterization of P1 minireplicons, XPl:5R and X-P1:5L, J. Bacteriol. 153: 800–812.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Coulby, J., 1987a, Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo, I. Mol. Biol. 194: 453–468.

    CAS  Google Scholar 

  • Sternberg, N., and Coulby, J., 1987b, Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pacand location of paccleavage termini, J. Mol. Biol. 194: 469–480.

    CAS  Google Scholar 

  • Sternberg, N., and Hamilton, D., 1981, Bacteriophage P1 site-specific recombination. I. Recombination between loxPsites, J. Mol. Biol. 150: 467–486.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., and Hoess, R., 1983, The molecular genetics of bacteriophage P1, Ann u. Rev. Genet. 17: 123–154.

    CAS  Google Scholar 

  • Sternberg, N., and Weisberg, R., 1975, Packaging of prophage and host DNA by coliphage lambda, Nature 256: 97–103.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., Austin, S., Hamilton, D., and Yarmolinsky, M., 1978, Analysis of bacteriophage P1 immunity by using lambda P1 recombinants constructed in vitro, Proc. Natl. Acad. Sci. USA 75: 5594–5598.

    CAS  Google Scholar 

  • Sternberg, N., Austin, S., and Yarmolinsky, M., 1979, Regulatory circuits in bacteriophage P1 as analyzed by physical dissection and reconstruction., Contrib. Microbiol. Immunol. 6: 89–99.

    PubMed  CAS  Google Scholar 

  • Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M., and Hoess, R., 1980, Site-specific recombination and its role in the life cycle of bacteriophage Pl, Cold Spring Harbor Symp. Quant. Biol. 45: 297–309.

    Google Scholar 

  • Sternberg, N, Hamilton, D., and Hoess, R., 1981a, P1 site-specific recombination. II. Recombination between loxPand the bacterial chromosome, /. Mol. Biol. 150: 487–507.

    CAS  Google Scholar 

  • Sternberg, N., Powers, M., Yarmolinsky, M., and Austin, S., 198 lb, Group Y incompatibility and copy control of P1 prophage, Plasmid 5:138–149.

    Google Scholar 

  • Sternberg, N., Hoess, R., and Abremski, K., 1983, The P1 lox-Cre site-specific recombination system: Properties of loxsites and biochemistry of lox-Cre interactions, in: Mechanisms of DNA Replication and Recombination, ICN-UCLA Symposia on Molecular and Cellular Biology, New Series ( N. Cozzarelli, ed.), Vol. 10, pp. 671–684, Alan R. Liss, New York.

    Google Scholar 

  • Sternberg, N., Sauer, B., Hoess, R., and Abremski, K., 1986, An initial characterization of the bacteriophage P1 cre structural gene and its regulatory region, /. Mol. Biol. 187: 197–212.

    CAS  Google Scholar 

  • Stodolsky, M., 1973, Bacteriophage P1 derivatives with bacterial genes: A heterozygote enrichment method for the selection of Pldprolysogens, Virology 53: 471–475.

    PubMed  CAS  Google Scholar 

  • Stoleru, G. H., Gerbaud, G. R., Bouanchaud, D. H., and LeMinor, L., 1972, Etude d’un plasmide transférable déterminant la production d’H2S et la résistance à la tétracycline chez “Escherichia coli,” Ann. Inst. Pasteur. 123: 743–754.

    CAS  Google Scholar 

  • Streiff, M. B., Iida, S., and Bickle, T. A., 1987, Expression and proteolytic processing of the darAanti-restriction gene product of bacteriophage P1, Virology 157: 167–171.

    PubMed  CAS  Google Scholar 

  • Streisinger, G., Emrich, J., and Stahl, M. M., 1967, Chromosome structure in phage T4. III. Terminal redundancy and length determination, Proc. Natl. Acad. Sci. USA 57: 292–295.

    PubMed  CAS  Google Scholar 

  • Summers, D. K., and Sherratt, D. J., 1984, Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability, Cell 36: 1097–1103.

    PubMed  CAS  Google Scholar 

  • Susskind, M. M., and Botstein, D., 1978, Molecular genetics of bacteriophage P22, Microbial. Rev. 42: 385–413.

    CAS  Google Scholar 

  • Swack, J. A., Pal, S. K., Mason, R. J., Abeles, A. L., and Chattoraj, D. K., 1987, P1 plasmid replication: measurement of initiator protein concentration in vivo, I. Bacteriol. 169: 3737–3742.

    CAS  Google Scholar 

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., 1983, The doublestranded-break repair model for recombination, Cell 33: 25–35.

    PubMed  CAS  Google Scholar 

  • Tabuchi, A., 1985, Nucleotide sequence of the replication region of plasmid R401 and its incompatibility function, Microbiol. lmmunol. 29: 383–393.

    CAS  Google Scholar 

  • Takano, T., 1971, Bacterial mutant defective in plasmid formation. Requirement for the Ion plus allele, Proc. Natl. Acad. Sci. USA 68: 1469–1473.

    CAS  Google Scholar 

  • Takano, T., 1977, Mechanism of defective lysogenization by phage P1 in a /on-mutant of Escherichia coliK12, Microbiol. Immunol. 21: 573–581.

    PubMed  CAS  Google Scholar 

  • Takano, T., and Ikeda, S., 1976, Phage P1 carrying kanamycin resistance gene of R factor, Virology 70: 198–200.

    PubMed  CAS  Google Scholar 

  • Tanimoto, K., and Iino, T., 1984, An essential gene for replication of the mini-F plasmid from origin I, Mol. Gen. Genet. 196: 59–63.

    PubMed  CAS  Google Scholar 

  • Teather, R. M., 1974, The localization and timing of cell division in Escherichia coli, Ph.D. dissertation, University of Edinburgh.

    Google Scholar 

  • Terawaki, Y., and Rownd, R., 1972, Replication of R factor Rtsl in Proteus mirabilis, 1. Bacteriol. 109: 492–498.

    CAS  Google Scholar 

  • Terawaki, Y., Takayasu, H., and Akiba, T., 1967, Thermosensitive replication of a kanamycin resistance factor, /. Bacteriol. 94: 687–690.

    CAS  Google Scholar 

  • Terawaki, Y., Kakizawa, Y., Takayasu, H., and Yoshikawa, M., 1968, Temperature sensitivity of cell growth in Escherichia coliassociated with the temperature sensitive R(KM) factor, Nature 219: 284–285.

    PubMed  CAS  Google Scholar 

  • Ting, R. C., 1962, The specific gravity of transducing particles of bacteriophage P1, Virology 16: 115–121.

    PubMed  CAS  Google Scholar 

  • Tokino, T., Murotsu, T., and Matsubara, K., 1986, Purification and properties of the mini-F plasmid-encoded E protein needed for autonomous replication control of the plasmid, Proc. Natl. Acad. Sci. USA 83: 4109–4113.

    CAS  Google Scholar 

  • Tomas, J. M., and Kay, W. W., 1984, Effect of bacteriophage Pl lysogeny on lipopolysaccharide composition and the lambda receptor of Escherichia coli, I. Bacteriol. 159: 1047–1052.

    CAS  Google Scholar 

  • Tomas, J., Regué, M., Parés, R., Jofre, J., and Kay, W. W., 1984, P1 bacteriophage and tellurite sensitivity in Klebsiella pneumoniaeand Escherichia coli, Can. J. Microbiol. 30: 830–836.

    CAS  Google Scholar 

  • Tominaga, A., and Enomoto, M., 1986, Magnesium-dependent plaque formation by bacteriophage PlcinC(–)on Escherichia coliC and Shigella sonnei, Virology 155: 284–288.

    CAS  Google Scholar 

  • Touati-Schwartz, D., 1978, Two replication functions in phage Pl: ban, an analog of dnaB, and bof, involved in the control of replication, in: DNA Synthesis—Present and Future, ( I. Molineux, and M. Kohiyama, eds.), pp. 683–692, Plenum Press, New York.

    Google Scholar 

  • Touati-Schwartz, D., 1979a, A dnaBanalog, ban, specified by bacteriophage P1: Genetic and physiological evidence for functional analogy and interactions between the two products, Mol. Gen. Genet. 174: 173–188.

    CAS  Google Scholar 

  • Touati-Schwartz, D., 1979b, A new pleiotropic bacteriophage P1 mutation, bof, affecting cl repression activity, the expression of plasmid incompatibility and the expression of certain constitutive prophage genes, Mol. Gen. Genet. 174: 189–202.

    CAS  Google Scholar 

  • Toussaint, A., Lefebvre, N., Scott, J. R., Cowan, J. A., DeBruijn, F., and Bukhari, A. I., 1978, Relationships between temperate phages Mu and P1, Virology 89: 146–161.

    PubMed  CAS  Google Scholar 

  • Trawick, J. D., and Kline, B. C., 1985, A two-stage molecular model for control of mini-F replication. Plasmid 13: 59–69.

    PubMed  CAS  Google Scholar 

  • Tsutsui, H., Fujiyama, A., Murotsu, T., and Matsubara, K., 1983, Role of nine repeating sequences of the mini-F genome for expression of F-specific incompatibility phenotype and copy number control, /. Bacteriol. 155: 337–344.

    CAS  Google Scholar 

  • Tucker, W. T., Miller, C. A., and Cohen, S. N., 1984, Structural and functional analysis of the parregion of the pSC101 plasmid, Cell 38: 191–201.

    PubMed  CAS  Google Scholar 

  • Tye, B. K., Chan, R. K., and Botstein, D., 1974a, Packaging of an oversize transducing genome by Salmonellaphage P22, J. Mol. Biol. 85: 485–500.

    CAS  Google Scholar 

  • Tye, B. K., Huberman, J. A., and Botstein, D., 1974b, Non random circular permutation of phage P22 DNA, J. Mol. Biol. 85: 501–532.

    CAS  Google Scholar 

  • Tyler, B. M., and Goldberg, R. B., 1976, Transduction of chromosomal genes between enteric bacteria by bacteriophage P1, J. Bacteriol. 125: 1105–1111.

    PubMed  CAS  Google Scholar 

  • Uhlin, B. E., and Nordström, K., 1985, Preferential inhibition of plasmid replication in vivoby altered DNA gyrase activity in Escherichia coli, 1. Bacteriol. 162: 855–857.

    CAS  Google Scholar 

  • Velleman, M., Dreisekelmann, B., and Schuster, H., 1987, Multiple repressor binding sites in the genome of bacteriophage P1, Proc. Natl. Acad. Sci. USA 84: 5570–5574.

    PubMed  CAS  Google Scholar 

  • Vetter, D., Andrews, B. J., Roberts-Beatty, L., and Sadowski, P. D., 1983, Site-specific recom- bination of yeast 2-rim DNA in vitro, Proc. Natl. Acad. Sci. USA 80: 7284–7288.

    CAS  Google Scholar 

  • Wada, C., Akiyama, Y., Ito, K., and Yura, T., 1986, Inhibition of F replication in htpRmutants of Escherichia colideficient in sigma 32 protein, Mol. Gen. Genet. 203: 208–213.

    PubMed  CAS  Google Scholar 

  • Walker, D. H. Jr., and Anderson, T. F., 1970, Morphological variants of coliphage P1, J. Virol. 5: 765–782.

    PubMed  Google Scholar 

  • Walker, D. H. Jr., and Walker, J. T., 1975, Genetic studies of coliphage Pl. I. Mapping by use of prophage deletions, J. Virol. 16: 525–534.

    PubMed  Google Scholar 

  • Walker, D. H. Jr., and Walker, J. T., 1976a, Genetic studies of coliphage P1. II. Relatedness to phage P7, J. Virol. 19: 271–274.

    Google Scholar 

  • Walker, D. H. Jr., and Walker, J. T., 1976b, Genetic studies of coliphage P1. III. Extended genetic map, /. Virol. 20: 177–187.

    CAS  Google Scholar 

  • Walker, J. T., and Walker, D. H. Jr., 1980, Mutations in coliphage P1 affecting host cell lysis, /. Virol. 35: 519–530.

    CAS  Google Scholar 

  • Walker, J. T., and Walker, D. H. Jr., 1981, Structural proteins of coliphage P1, in: Progress in Clinical and Biological Research( M. S. DuBow, ed.), Vol. 64, pp. 69–77, Alan R. Liss, New York.

    Google Scholar 

  • Walker, J. T., and Walker, D. H. Jr., 1983, Coliphage P1 morphogenesis. Analysis of mutants by electron microscopy, J. Virol. 45: 1118–1139.

    PubMed  CAS  Google Scholar 

  • Walker, J. T., Iida, S., and Walker, D. H. Jr., 1979, Permutation of the DNA in small-headed virions of coliphage

    Google Scholar 

  • Wall, J. D., and Harriman, P. D., 1974, Phage P1 mutants with altered transducing abilities for Escherichia coli, Virology 59: 532–544.

    CAS  Google Scholar 

  • Wandersman, C., and Yarmolinsky, M., 1977, Bipartite control of immunity conferred by the related heteroimmune plasmid prophages, P1 and P7 (formerly dAmpl, Virology 77: 386–400.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Nishida, H., Ogata, C., Arai, T., and Sato, S., 1964, Episome-mediated transfer of drug-resistance in Enterobacteriaceae. III. Transduction of resistance factors, J. Bacteriol. 82: 202–209.

    Google Scholar 

  • Watkins, C. A., and Scott, J. R., 1981, Characterization of bacteriophage D6, Virology 110: 302–317.

    PubMed  CAS  Google Scholar 

  • West, B. W., and Scott, J. R., 1977, Superinfection immunity and prophage repression in phage P1 and P7. III. Induction by virulent mutants, Virology 78: 267–276.

    PubMed  CAS  Google Scholar 

  • Wickner, S. H., and Chattoraj, D. K., 1987, Replication of miniP1 plasmid DNA in vitrorequires two initiation proteins encoded by the repAgene of phage P1 and the dnaAgene of Escherichia coli, Proc. Natl. Acad. Sci., USA 84: 3668–3672.

    CAS  Google Scholar 

  • Wierzbicki, A., Kendall, M., Abremski, K., and Hoess, R., 1987, A mutational analysis of the bacteriophage P1 recombinase Cre, J. Mol. Biol. 195: 785–794.

    PubMed  CAS  Google Scholar 

  • Windle, B. E., 1986, Characterization of a P1 bacteriophage encoded function, ref, that stimulates homologous recombination in E. coli, Ph.D. dissertation, University of Maryland, Catonsville.

    Google Scholar 

  • Windle, B. E., and Hays, J. B., 1986, A phage P1 function that stimulates homologous recombination of the Escherichia colichromosome, Proc. Natl. Acad. Sci. USA 83: 3885–3889.

    PubMed  CAS  Google Scholar 

  • Wolfson, J. S., Hooper, D. C., Swartz, M. N., Swartz, M. D., and McHugh, G. L., 1983, Novobiocin-induced elimination of F’lacand mini-F plasmids from Escherichia coli, J. Bacteriol. 156: 1165–1170.

    CAS  Google Scholar 

  • Womble, D. D., and Rownd, R. H., 1986, Regulation of Xdv plasmid replication. A quantitative model for control of plasmid Xdv replication in the bacterial cell division cycle, J. Mol. Biol. 191: 367–382.

    PubMed  CAS  Google Scholar 

  • Womble, D. D., and Rownd, R. H., 1987, Regulation of mini-F plasmid DNA replication. A quantitative model for control of plasmid mini-F replication in the bacterial cell division cycle, J. Mol. Biol. 195: 99–114.

    PubMed  CAS  Google Scholar 

  • Woods, W., and Egan, B., 1976, Prophage induction of non-inducible coliphage 186, J. Virol. 14: 1349–1366.

    Google Scholar 

  • Yamaguchi, K., and Masamune, Y., 1985, Autogenous regulation of synthesis of the replication protein in plasmid pSC101, Mol. Gen. Genet. 200: 362–367.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, K., and Yamaguchi, M., 1984, The replication origin of pSC101: Replication properties of a segment capable of autonomous replication, J. Gen. Appl. Microbiol. 30: 347–358.

    CAS  Google Scholar 

  • Yamamoto, Y., 1982, Phage P1 mutant with decreased abortive transduction, Virology 118: 329–344.

    PubMed  CAS  Google Scholar 

  • Yarmolinsky, M., 1977, Genetic and physical structure of bacteriophage P1 DNA, in: DNA Insertion Sequences, Episomes and Plasmids ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 721–732, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Yarmolinsky, M., 1984, Bacteriophage P1, in: Genetic Maps. 1984( S. f. O’Brien, ed.), Vol. 3, pp. 42–54, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Yarmolinsky, M., 1987, Bacteriophage P1, in: Genetic Maps, 1987( S. J. O’Brien, ed.), Vol. 4, pp. 38–47, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Yarmolinsky, M. B., and Stevens, E., 1983, Replication-control functions block the induction of an SOS response by a damaged P1 bacteriophage, Mol. Gen. Genet. 192: 140–148.

    PubMed  CAS  Google Scholar 

  • York, M., and Stodolsky, M., 1981, Characterization of PlargF derivatives from Escherichia coli K12 transduction. I. IS1 elements flank the argF gene segment, Mol. Gen. Genet. 181: 230–240.

    PubMed  CAS  Google Scholar 

  • York, M. K., and Stodolsky, M., 1982a, Characterization of P1argFderivatives from Escheri chia coliK12 transduction. II. Role of P1 in specialized transduction of argF, Virology 120: 130–145.

    CAS  Google Scholar 

  • York, M. K., and Stodolsky, M., 1982b, Characterization of PlargFderivatives from Escherichia coliK12 transduction. III. P 1 Cm 13argFderivatives, Virology 123: 336–343.

    CAS  Google Scholar 

  • Yoshida, Y., and Mise, K., 1984, Characterization of generalized transducing phage 4,W39 heteroimmune to phage P1 in Escherichia coliW39, Microbiol. lmmunol. 28: 415–426.

    CAS  Google Scholar 

  • Yuan, R., 1981, Structure and mechanism of multifunctional restriction endonucleases, Annu. Rev. Biochem. 50: 285–315.

    PubMed  CAS  Google Scholar 

  • Yun, T., and Vapnek, D., 1977, Electron microscopic analysis of bacteriophages P1, P1Cm and P7. Determination of genome sizes, sequence homology and location of antibiotic resistance determinants, Virology 77: 376–385.

    PubMed  CAS  Google Scholar 

  • Zabeau, M., and Roberts, R. J., 1979, The role of restriction endonuclease in molecular genetics, Mol. Genet. 3: 1–63.

    CAS  Google Scholar 

  • Zabrovitz, S., Segev, N., and Cohen, G., 1977, Growth of bacteriophage P1 in recombination-deficient hosts of Escherichia coli, Virology 80: 233–248.

    CAS  Google Scholar 

  • Zieg, J., Silverman, H., Hilmen, M., and Simon, M., 1977, Recombinational switch for gene expression, Science 196: 170–172.

    PubMed  CAS  Google Scholar 

  • Zyskind, J. W., Cleary, J. M., Brusilow, W. S. A., Harding, N. E., and Smith, D. W., 1983, Chromosomal replication origin from the marine bacterium Vibrio harveyifunctions in Escherichia coli: oriCconsensus sequence, Proc. Natl. Acad. Sci. USA 80: 1164–1168.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Yarmolinsky, M.B., Sternberg, N. (1988). Bacteriophage P1. In: Calendar, R. (eds) The Bacteriophages. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5424-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5424-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5426-0

  • Online ISBN: 978-1-4684-5424-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics