Skip to main content

Phages with Protein Attached to the DNA Ends

  • Chapter
Book cover The Bacteriophages

Part of the book series: The Viruses ((VIRS))

Abstract

The finding of specific proteins covalently linked to the 5’ ends of viral DNAs, the so-called terminal proteins, lead to the discovery of a new mechanism for the initiation of replication in which the primer, instead of being the 3’ OH group of a nucleotide provided by RNA or DNA molecules, is the OH group of a serine, threonine, or tyrosine residue of the terminal protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamford, D. H., and Mindich, L., 1984, Characterization of the DNA-protein complex at the termini of the bacteriophage PRD1 genome, J. Virol. 50:309–315.

    PubMed  CAS  Google Scholar 

  • Bamford, D. H., McGraw, T., MacKenzie, G., and Mindich, L., 1983, Identification of a protein bound to the termini of bacteriophage PRD1 DNA, J. Virol. 47:311–316

    PubMed  CAS  Google Scholar 

  • Barthelemy, I., Salas, M., and Mellado, R. P., 1986, In vivo transcription of bacteriophage 4)29 DNA. Transcription initiation sites, J. Virol. 60:874–879.

    PubMed  CAS  Google Scholar 

  • Barthelemy, I., Lâzaro, J. M., Méndez, E., Mellado, R. P., and Salas, M., 1987a, Purification in an active form of the phage 4)29 protein p4 that controls the viral late transcription, Nucleic Acid Res. 15:7781–7793.

    Article  CAS  Google Scholar 

  • Barthelemy, I., Salas, M., and Mellado, R. P., 1987b, In vivo transcription of bacteriophage 4)29 DNA. Transcription termination, J. Virol. 61:1751–1755.

    CAS  Google Scholar 

  • Bjornsti, M. A., Reilly, B. E., and Anderson, D. L., 1981, In vitro assembly of the Bacillus subtilis bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 78:5861–5865.

    Article  PubMed  CAS  Google Scholar 

  • Bjomsti, M. A., Reilly, B. E., and Anderson, D. L., 1983, Morphogenesis of bacteriophage 4)29 of Bacillus subtilis: Oriented and quantized in vitro packaging of DNA-gp3, J. Virol. 45:383–396.

    Google Scholar 

  • Bjornsti, M. A., Reilly, B. E., and Anderson, D. L., 1984, Bacteriophage 4)29 proteins required for in vitro DNA-gp3 packaging, J. Virol. 50:766–772.

    PubMed  CAS  Google Scholar 

  • Blanco, L., and Salas, M., 1984, Characterization and purification of a phage X29-encoded DNA polymerase required for the initiation of replication, Proc. Natl. Acad. Sci. USA 81:5325–5329.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, L., and Salas, M., 1985a, Characterization of a 3’—*5’ exonuclease activity in the phage 4)29—encoded DNA polymerase, Nucleic Acids Res. 13:1239–1249.

    Article  CAS  Google Scholar 

  • Blanco, L., and Salas, M., 1985b, Replication of phage X29 DNA with purified terminal protein and DNA polymerase: Synthesis of full-length 4)29 DNA, Proc. Natl. Acad. Sci. USA 82:6404–6408.

    Article  CAS  Google Scholar 

  • Blanco, L., and Salas, M., 1986, Effect of aphidicolin and nucleotide analogs on the phage 4..29 DNA polymerase, Virology 153:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, L., Garcia, J. A., Penalva, M. A., and Salas, M., 1983, Factors involved in the initiation of phage r1)29 DNA replication in vitro: Requirement of the gene 2 product for the formation of the protein p3-dAMP complex, Nucleic Acids Res. 11:1309–1323.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, L., Prieto, I., Gutierrez, J., Bernaod, A., Lazar, M., Hermoso, M., and Salas, M., 1987, Effect of NHS ions on X29 DNA-protein p3 replication: Formation of a complex between the terminal protein and the DNA polymerase, J. Virol. 61:3983–3991.

    PubMed  CAS  Google Scholar 

  • Blanco, L., Garcia, J. A., and Salas, M., 1984, Cloning and expression of gene 2, required for the protein-primed initiation of the Bacillus subtilis phage ib29 DNA replication, Gene 29:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, L., Gutiérrez, J., Lazaro, J. M., Bernad, A., and Salas, M., 1986, Replication of phage (b29 DNA in vitro: Role of the viral protein p6 in initiation and elongation, Nucleic Acids Res. 14:4923–4937.

    Article  PubMed  CAS  Google Scholar 

  • Carrascosa, J. L., Camacho, A., Moreno, F., Jiménez, F., Mellado, R. P., Vinuela, E., and Salas, M., 1976, Bacillus subtilis phage 4)29: Characterization of gene products and functions, Eur. J. Biochem. 66:229–241.

    Article  PubMed  CAS  Google Scholar 

  • Daubert, S. D., and Bruening, G., 1984, Detection of genome-linked proteins of plants and animal viruses, Methods Virol. 8:347–379.

    CAS  Google Scholar 

  • Davis, T. N., and Cronan, E. J. Jr., 1983, Nonsense mutants of the lipid-containing bacteriophage PR4, Virology 126:600–613.

    Article  PubMed  CAS  Google Scholar 

  • Dobinson, K. F., and Spiegelman, G. B., 1985, Nucleotide sequence and transcription of a bacteriophage 4)29 early promoter, J. Biol. Chem. 260:5950–5955.

    PubMed  CAS  Google Scholar 

  • Escarmis, C., García, P., Méndez, E., Lopez, R., Salas, M., and Garcia, E., 1985, Inverted terminal repeats and terminal proteins of the genomes of pneumococcal phages, Gene 36:341–348.

    Article  PubMed  CAS  Google Scholar 

  • Escarmis, C., Gómez, A., Garcia, E., Ronda, C., Lopez, R., and Salas, M., 1984, Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1, Virology 133:166–171.

    Article  PubMed  CAS  Google Scholar 

  • Escarmis, C., and Salas, M., 1981, Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage 4)29, Proc. Natl. Acad. Sci. USA 78:1446–1450.

    Article  PubMed  CAS  Google Scholar 

  • Escarmis, C., and Salas, M., 1982, Nucleotide sequence of the early genes 3 and 4 of bacteriophage 4)29, Nucleic Acids Res. 10:5785–5798.

    Article  PubMed  CAS  Google Scholar 

  • Fucik, V., Grunow, E., Grünnerovâ, H., Hostomskÿ, Z., and Zadrazyl, S., 1980, New members of Bacillus subtilis phage group containing a protein link in their circular DNA, in: DNA: Recombination, Interactions and Repair (S. Zadrazyl and J. Sponar, eds.), pp. 111–118, Pergamon, New York.

    Google Scholar 

  • Garcia, E., Gómez, A., Ronda, C., Escarmis, C., and Lopez, R., 1983a, Pneumococcal bacteriophage Cp-1 contains a protein tightly bound to the 5’ termini of its DNA, Virology 128:92–104.

    Article  CAS  Google Scholar 

  • García, J. A., Pastrana, R., Prieto, I., and Salas, M., 1983b, Cloning and expression in Escherichia coli of the gene coding for the protein linked to the ends of Bacillus subtilis phage 4)29 DNA, Gene 21:65–76.

    Article  Google Scholar 

  • García, J. A., Penalva, M. A., Blanco, L., and Salas, M., 1984, Template requirements for the initiation of phage 4)29 DNA replication in vitro,Proc. Natl. Acad. Sci. USA 81:80–84.

    Article  PubMed  Google Scholar 

  • García, P., Hermoso, J. M., García, J. A., García, E., Lopez, E., and Salas, M., 1986a, Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5’-dAMP, J. Virol. 58:31–35.

    Google Scholar 

  • Garcia, E., Ronda, C., Garcia, P., and Lopez, R., 1986b, Studies on the replication of bacterio- phage Cp-1 DNA in Streptococcus pneumoniae, Microbiologia 2:115–120.

    CAS  Google Scholar 

  • Garvey, K. J., Yoshikawa, H., and Ito, J., 1985, The complete sequence of the Bacillus phage 4)29 right early region, Gene 40:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Geiduschek, E. P., and Ito, J., 1982, Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis, in: The Molecular Biology of the Bacilli Vol. 1 (D. A. Dubnau, ed.), pp. 203–245, Academic Press, New York.

    Google Scholar 

  • Guo, P., Grimes, S., and Anderson, D. L., 1986, A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 83:3505–3509.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez, J., Garcia, J. A., Blanco, L., and Salas, M., 1986a, Cloning and template activity of the origins of replication of phage 4)29 DNA, Gene 43:1–11.

    Article  Google Scholar 

  • Gutiérrez, J., Vinós, J., Prieto, I., Méndez, E., Hermoso, J. M., and Salas, M., 1986b, Signals in the 4)29 DNA–terminal protein template for the initiation of phage 4)29 DNA replication, Virology 155:474–483.

    Article  Google Scholar 

  • Hagen, E. W., Reilly, B. E., Tosi, M. E., and Anderson, D. L., 1976, Analysis of gene function of bacteriophage 4)29 of Bacillus subtilis: Identification of cistrons essential for viral assembly, J. Virol. 19:501–517.

    PubMed  CAS  Google Scholar 

  • Harding, N. E., and Ito, J., 1980, DNA replication of bacteriophage 4)29: Characterization of the intermediates and location of the termini of replication, Virology 104:323–338

    Article  PubMed  CAS  Google Scholar 

  • Henney, D. J., and Hoch, J. A., 1980, The Bacillus subtilis chromosome, Microbiol. Rev. 44:57–82.

    Google Scholar 

  • Hermoso, J. M., Mendez, E., Soriano, F., and Salas, M., 1985, Location of the serine residue involved in the linkage between the terminal protein and the DNA of 4)29, Nucleic Acids Res. 13:7715–7728.

    Article  PubMed  CAS  Google Scholar 

  • Hermoso, J. M., and Salas, M., 1980, Protein p3 is linked to the DNA of phage 4)29 through a phosphoester bond between serine and 5’-dAMP, Proc. Natl. Acad. Sci. USA 77:6425–6428.

    Article  PubMed  CAS  Google Scholar 

  • Herranz, L., Salas, M., and Carrascosa, J. L., 1986, Interaction of the bacteriophage 4)29 connector protein with the viral DNA, Virology 155:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika, H., and Sakaguchi, R., 1982, Analysis of linear plasmids isolated from Strep-tomyces: Association of protein with the ends of the plasmid DNA, Plasmdd 7:59–65

    Article  CAS  Google Scholar 

  • Hirokawa, H., 1972, Transfecting deoxyribonucleic acid of Bacillus bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 69:1555–1559.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, H., Matsumoto, K., and Ohashi, M., 1982, Replication of Bacillus small phage DNA, in: Microbiology-1982 (D. Schlessinger, ed.), pp. 45–46, American Society for Microbiology, Washington.

    Google Scholar 

  • Huberman, J. A., 1981, New views of the biochemistry of eukaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase, Cell 23:647–648

    Article  PubMed  CAS  Google Scholar 

  • Inciarte, M. R., Salas, M., and Sogo, J. M., 1980, Structure of replicating DNA molecules of Bacillus subtilis bacteriophage 4)29, J. Virol. 34:187–199.

    PubMed  CAS  Google Scholar 

  • Ito, J., 1978, Bacteriophage 4)29 terminal protein: Its association with the 5’ termini of the 4)29 genome, J. Virol. 28:895–904.

    PubMed  CAS  Google Scholar 

  • Khan, N. W., Wright, G. E., Dudycz, L. W., and Brown, N. C., 1984, Butylphenyl dGTP: A selective and potent inhibitor of mammalian DNA polymerase alpha, Nucleic Acids Res. 12:3695–3706.

    Article  PubMed  CAS  Google Scholar 

  • Kemble, R. J., and Thompson, R. D., 1982, S1 and S2, the linear mitochondrial DNAs present in a male sterile line of maize, possess terminally attached proteins, Nucleic Acids Res. 10:8181–8190.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, Y., Hirai, K., and Hishinuma, F., 1984, The yeast linear DNA killer plasmids pGLK1 and pGLK2, possess terminally attached proteins, Nucleic Acids Res. 12:5685–5692.

    Article  PubMed  CAS  Google Scholar 

  • Lechner, R. L., and Kelly, T. J. Jr., 1977, The structure of replicating adenovirus 2 DNA molecules, Cell 12:1007–1020.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, R., Ronda, C., García, P., Escarmís, C., and Garcia, E., 1984, Restriction cleavage maps of the DNAs of Streptococcus pneumoniae bacteriophages containing protein covalently bound to their 5’ ends, Mol. Gen. Genet. 197:67–74.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Kim, C. I., Urano, S., Ohashi, H., and Hirokawa, H., 1986, Aphidicolinresistant mutants of bacteriophage 429: Genetic evidence for altered DNA polymerase, Virology 152:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Saito, T., and Hirokawa, H., 1983, In vitro initiation of bacteriophage 429 and M2 DNA replication: Genes required for formation of a complex between the terminal protein and 5’dAMP, Mol. Gen. Genet. 191:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Saito, T., Kim, C. I., Ando, T., and Hirokawa, H., 1984, Bacteriophage 529 DNA replication in vitro: Participation of the terminal protein and the gene 2 product in elongation, Mol. Gen. Genet. 196:381–386.

    Article  PubMed  CAS  Google Scholar 

  • McGraw, T., Yang, H. L., and Mindich, L., 1983, Establishment of a physical and genetic map for bacteriophage PRD1, Mol. Gen. Genet. 190:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, R. P., and Salas, M., 1982, High level synthesis in Escherichia coli of the Bacillus subtilis phage 429 proteins p3 and p4 under the control of phage lambda P,, promoter, Nucleic Acids Res. 10:5773–5784.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, R. P., and Salas, M., 1983, Initiation of phage 429 DNA replication by the terminal protein modified at the carboxyl end, Nucleic Acids Res. 11:7397–7407.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, R. P., Moreno, F., Vinuela, E., Salas, M., Reilly, B. E., and Anderson, D. L., 1976, Genetic analysis of bacteriophage 4.29 of Bacillus subtilis: Integration and mapping of reference mutants of two collections, J. Virol. 19:495–500.

    PubMed  CAS  Google Scholar 

  • Mellado, R. P., Penalva, M. A., Inciarte, M. R., and Salas, M., 1980, The protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage 429 is involved in the initiation of DNA replication, Virology 104:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Mellado, R. P., Barthelemy, I., and Salas, M., 1986a, In vivo transcription of bacteriophage 429 DNA early and late promoter sequences, I. Mol. Biol. 191:191–197.

    Article  CAS  Google Scholar 

  • Mellado, R. P., Barthelemy, I., and Salas, M., 1986b, In vitro transcription of bacteriophage 4.29 DNA. Correlation between in vitro and in vivo promoters, Nucleic Acids Res. 14:4731–4741.

    Article  CAS  Google Scholar 

  • Mindich, L., Bamford, D., Goldthwaite, C., Laverty, M., and MacKenzie, G., 1982, Isolation of nonsense mutants of lipid-containing bacteriophage PRD1, j. Virol. 44:1013–1020.

    PubMed  CAS  Google Scholar 

  • Moreno, F., Camacho, A., Vinuela, E., and Salas, M., 1974, Suppressor-sensitive mutants and genetic map of Bacillus subtilis bacteriophage 429, Virology 62:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, C. D., Hocko, J., Navab, M., and Dasgupta, A., 1984, ATP is required for initiation of poliovirus RNA synthesis in vitro: Demonstration of tyrosine-phosphate linkage between in vitro—synthesized RNA and genome-linked protein, I. Virol. 50:515–523.

    CAS  Google Scholar 

  • Ortfn, J., Vinuela, E., Salas, M., and Vasquez, C., 1971, DNA-protein complex in circular DNA from phage 429, Nature New Biol. 234:275–277.

    Article  Google Scholar 

  • Paces, V., Vlcek, C., Urbanek, P., and Hostomskÿ, Z., 1985, Nucleotide sequence of the major early region of Bacillus subtilis phage PZA, a close relative of 429, Gene 38:45–46.

    Article  PubMed  CAS  Google Scholar 

  • Paces, V., Vlcek, C., and Urbanek, P., 1986a, Nucleotide sequence of the late region of Bacillus subtilis phage PZA, a close relative of phage 429, Gene 44:107–114.

    Article  CAS  Google Scholar 

  • Paces, V., Vlcek, C., Urbanek, P., and Hostomskÿ, Z., 1986b, Nucleotide sequence of the right early region of Bacillus subtilis phage PZA completes the 19366-bp sequence of PZA genome. Comparison with the homologous sequence of phage 429, Gene 44:115–120.

    CAS  Google Scholar 

  • Pastrana, R., Lazaro, J. M., Blanco, L., Garcia, J. A., Méndez, E., and Salas, M., 1985, Over-production and purification of protein p6 of Bacillus subtilis phage +29: Role in the initiation of DNA replication, Nucleic Acids Res. 13:3083–3100.

    Article  PubMed  CAS  Google Scholar 

  • Penalva, M. A., and Salas, M., 1982, Initiation of phage +29 DNA replication in vitro: Formation of a covalent complex between the terminal protein, p3, and 5’-dAMP, Proc. Natl. Acad. Sci. USA 79:5522–5526.

    Article  PubMed  CAS  Google Scholar 

  • Prieto, I., Lâzaro, J. M., Garcia, J. A., Hermoso, J. M., and Salas, M., 1984, Purification in a functional form of the terminal protein of Bacillus subtilis phage +29, Proc. Natl. Acad. Sci. USA 81:1639–1643.

    Article  PubMed  CAS  Google Scholar 

  • Prieto, I., Serrano, M., Lazaro, J. M., Salas, M., and Hermoso, J. M., 1988, Interaction of the bacteriophage +29 protein p6 with double-stranded DNA, Proc. Natl. Acad. Sci. U.S.A. 85 (in press).

    Google Scholar 

  • Rekosh, D. M. K., Russell, W. C., Bellett, A. J. D., and Robinson, A. J., 1977, Identification of a protein linked to the ends of adenovirus DNA, Cell 11:283–295.

    Article  PubMed  CAS  Google Scholar 

  • Ronda, C., Lopez, R., Gómez, A., and Garcia, E., 1983, Protease-sensitive transfection of Streptococcus pneumoniae with bacteriophage Cp-1 DNA, J. Virol. 48:721–730.

    PubMed  CAS  Google Scholar 

  • Salas, M., 1983, A new mechanism for the initiation of replication of +29 and adenovirus DNA: Priming by the terminal protein, Curr. Top. Microbiol. Immunol. 109:89–106.

    Article  CAS  Google Scholar 

  • Salas, M., Mellado, R. P., Vinuela, E., and Sogo, J. M., 1978, Characterization of a protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage +29, J. Mol. Biol. 119:269–291.

    Article  PubMed  CAS  Google Scholar 

  • Salas, M., Prieto, I., Gutiérrez, J., Blanco, L., Zaballos, A., Lâzaro, J. M., Martin, G., Bemad, A., Garmendia, C., Mellado, R. P., Escarmís, C., and Hermoso, J. M., 1986, Replication of phage +29 DNA primed by the terminal protein, in: Mechanisms of DNA Replication and Recombination, UCLA Symposia on Molecular and Cellular Biology, New Series (T. Kelly and R. McMacken (eds.), Vol. 47, Alan R. Liss, New York.

    Google Scholar 

  • Savilahti, H., and Bamford, D. H., 1986, Linear $DNA replication: Inverted terminal repeats of five closely related Escherichia coli bacteriophages, Gene 49:199–205.

    Article  PubMed  CAS  Google Scholar 

  • Schachtele, C. F., De Sain, C. V., and Anderson, D. L., 1973, Transcription during the development of bacteriophage +29: Definition of early and late ribonucleic acid, J. Virol. 11:9–16.

    PubMed  CAS  Google Scholar 

  • Shih, M. F., Watabe, K., and Ito, J. 1982, In vitro complex formation between bacteriophage +29 terminal protein and deoxynucleotide, Biochem. Biophys. Res. Commun. 105:1031–1036.

    CAS  Google Scholar 

  • Shih, M. F., Watabe, K., Yoshikawa, H., and Ito, J., 1984, Antibodies specific for the +29 terminal protein inhibit the initiation of DNA replication in vitro,Virology 133:56–64.

    Article  PubMed  CAS  Google Scholar 

  • Sogo, J. M., Inciarte, M. R., Corral, J., Vinuela, E., and Salas, M., 1979, RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage +29, J. Mol. Biol. 127:411–436.

    Article  PubMed  CAS  Google Scholar 

  • Sogo, J. M., Garcia, J. A., Penalva, M. A., and Salas, M., 1982, Structure of protein-containing replicative intermediates of Bacillus subtilis phage $29 DNA, Virology 116:1–18

    Article  PubMed  CAS  Google Scholar 

  • Stillman, B. W., 1983, The replication of adenovirus DNA with purified proteins, Cell 35:7-9.

    Article  PubMed  CAS  Google Scholar 

  • Talavera, A., Jiménez, F., Salas, M., and Vinuela, E., 1971, Temperature-sensitive mutants of bacteriophage +29, Virology 46:586–595.

    Article  PubMed  CAS  Google Scholar 

  • Talavera, A., Salas, M., and Vinuela, E., 1972, Temperature-sensitive mutants affected in DNA synthesis in phage $29 of Bacillus subtilis, Eur. J. Biochem. 31:367–371.

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian, A. B., Koonin, E. V., Agol, V. I., and Bogdanov, A. A., 1984, Encephalomyocarditis virus RNA synthesis in vitro is protein-primed. EMBO J 3:2593–2598.

    PubMed  CAS  Google Scholar 

  • Vléek, C., and Paces, V., 1986, Nucleotide sequence of the late region of Bacillus phage +29 completes the 19285-bp sequence of $29 genome. Comparison with the homologous sequence of phage PZA, Gene 46:215–225.

    Article  Google Scholar 

  • Watabe, K., and Ito, J., 1983, A novel DNA polymerase induced by Bacillus subtilis phage +29, Nucleic Acids Res. 11:8333–8342.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, K., Shih, M. F., Sugino, A., and Ito, J., 1982, In vitro replication of bacteriophage +29 DNA, Proc. Natl. Acad. Sci. USA 79:5245–5248.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, K., Shih, M. F., and Ito, J., 1983, Protein-primed initiation of phage X29 DNA replication, Proc. Natl. Acad. Sci. USA 80:4248–4252.

    Article  PubMed  CAS  Google Scholar 

  • Watabe, K., Leusch, M., and Ito, J., 1984a, Replication of bacteriophage 4)29 DNA in vitro: The roles of terminal protein and DNA polymerase, Proc. Natl. Acad. Sci. USA 81:5374–5378.

    Article  CAS  Google Scholar 

  • Watabe, K., Leusch, M., and Ito, J., 1984b, A 3’ to 5’ exonuclease activity is associated with phage (1)29 DNA polymerase, Biochem. Biophys. Res. Commun. 123:1019–1026

    Article  CAS  Google Scholar 

  • Yanofsky, S., Kawamura, F., and Ito, J., 1976, Thermolabile transfecting DNA from tem-perature-sensitive mutant of phage X29, Nature 259:60–63.

    Article  PubMed  CAS  Google Scholar 

  • Yehle, C. O., 1978, Genome-linked protein associated with the 5’ termini of bacteriophage X29 DNA, /. Virol. 27:776–783.

    CAS  Google Scholar 

  • Yoshikawa, H., and Ito, J., 1981, Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes, Proc. Natl. Acad. Sci. USA 78:2596–2600

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, H., and Ito, J., 1982, Nucleotide sequence of the major early region of bacterio-phage 4,29, Gene 17:323–335.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, H., Friedmann, T., and Ito, J., 1981, Nucleotide sequences at the termini of 43.29 DNA, Proc. Natl. Acad. Sci. USA 78:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, H., Garvey, K. J., and Ito, J., 1985, Nucleotide sequence analysis of DNA replication origins of the small Bacillus bacteriophages: Evolutionary relationships, Gene 37:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Zaballos, A., Salas, M., and Mellado, R. P., 1986, Initiation of phage X29 DNA replication by deletion mutants at the carboxyl end of the terminal protein, Gene 43:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Zaballos, A., Mellado, P., and Salas, M., 1988, Initiation of phage 4)29 DNA replication by mutants with deletions at the amino end of the terminal protein, Gene (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Salas, M. (1988). Phages with Protein Attached to the DNA Ends. In: Calendar, R. (eds) The Bacteriophages. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5424-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5424-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5426-0

  • Online ISBN: 978-1-4684-5424-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics