Skip to main content

Phage Evolution and Speciation

  • Chapter
The Bacteriophages

Part of the book series: The Viruses ((VIRS))

Abstract

One of the most important conceptual advances in evolutionary science during this century was the populational definition of the biological species (Mayr, 1969.) A species is defined not by the resemblance of individuals to some type specimen but rather by the cause of that resemblance—their genetic relatedness as members of a closed interbreeding population whose genes can be considered a common pool. Even among sexually reproducing higher eukaryotes, the species thus conceived is an ideal seldom fully realized. Attempts to apply the concept too literally have been justly criticized (Ehrlich and Raven, 1969). Nevertheless, the realization that the essence of speciation lies in reproductive isolation must qualify as one of the major insights in all of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anilionis, A., and Riley, M., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coli strains, J. Bacteriol. 143: 355.

    PubMed  CAS  Google Scholar 

  • Backhaus, H., and Petri, J. B., 1984, Sequence analysis of a region from the early right operon in phage P22 including the replication genes 18 and 12, Gene 32: 289.

    Article  PubMed  CAS  Google Scholar 

  • Benedik, M., Mascarenhas, D., and Campbell, A., 1983, The integrase promoter and T1 terminator in bacteriophages X and 434, Virology 126: 658.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A., 1981, Evolutionary significance of accessory DNA elements in bacteria, Annu. Rev. Microbiol. 35: 55.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Campbell, A., Ma, D. P., Benedik, M., and Limberger, R., 1986, Reproductive isolation in prokaryotes and their accessory DNA elements, in: Banbury Report 24: Antibiotic Resistance Genes: Ecology, Transfer, and Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 337–345.

    Google Scholar 

  • Davis, R. W., and Hyman, R. W., 1971, A study in evolution: The DNA base sequence homology between coliphages T7 and T3, /. Mol. Biol. 62: 287.

    Article  CAS  Google Scholar 

  • Dove, W., 1971, Biology inference, in: The Bacteriophage Lambda (A. D. Hershey, ed.), pp. 297–312, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.

    Google Scholar 

  • Ehrlich, P. R., and Raven, P. H., 1969, Differentiation of populations, Science 165: 1228.

    Article  PubMed  CAS  Google Scholar 

  • Espion, D., Kaiser, K., and Dambly-Chaudiere, C., 1983, A third defective lambdoid pro-phage of Escherichia coli K-12 defined by the X derivative, X qin 111, J. Mol. Biol. 170: 611

    Article  PubMed  CAS  Google Scholar 

  • Espion, D., Kaiser, K., and Dambly-Chaudiere, C., Federal Register (U.S.), 1986, 51: 23

    Google Scholar 

  • Fiandt, M., Hradecna, Z., Lozeron, H. A., and Szybalski, W., 1971, Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi 80, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 329–354, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Franklin, N. C., 1985, Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages X, 41)21, and P22, J. Mol. Biol. 181: 75.

    Article  PubMed  CAS  Google Scholar 

  • Grosschedl, R., and Schwarz, E., 1979, Nucleotide sequence of the Cro-cII-oop region of bacteriophage 434 DNA, Nucleic Acids Res. 6: 867.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, E. B., and Yarmolinsky, M. B., 1986, Host participation in plasmid maintenance: dependence upon dnaA of replicons derived from P1 and F, Proc. Natl. Acad. Sci. USA 83: 4423.

    Article  PubMed  CAS  Google Scholar 

  • Hershey, A. D., 1971, Comparative molecular structure among related phage DNA’s, Carnegie Inst. Washington Yearb. 1970: 3.

    Google Scholar 

  • Highton, P. J., Chang, Y., Macotte, W. R. Jr., and Schnaitman, C. A., 1985, Evidence that the outer membrane protein nmpC of Escherichia coli K-12 lies within the defective qsr prophage, J. Bacteriol. 162: 256.

    PubMed  CAS  Google Scholar 

  • Hooper, I., and Egan, J. B., 1981, Coliphage 186 infection requires host initiation functions dnaA and dnaC, J. Virol. 40: 599.

    PubMed  CAS  Google Scholar 

  • Hunkapiller, T. H., Huang, H., Hood, L., and Campbell, J. H., 1982, The impact of modern genetics on evolutionary theory, in: Perspectives on Evolution ( R. Milkman, ed.), pp. 164–189, Sinauer, Sunderland, MA.

    Google Scholar 

  • Kaiser, K., and Murray, N. E., 1979, Physical characterisation of the Rac prophage in E. coli K-12, Mol. Gen. Genet. 175: 159.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, K., and Murray, N. E., 1980, On the nature of sbcA mutations in E. coli K-12. Mol. Gen. Genet. 179: 555.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R. E. F., 1985, Viral taxonomy for the nonvirologist, Annu. Rev. Microbiol. 39: 451.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, E., 1969, Principles of Systematic Zoology, McGraw-Hill, New York.

    Google Scholar 

  • Morse, M. L., Lederberg, E., and Lederberg, J., 1956, Transduction in Escherichia coli K-12, Genetics 41: 121.

    Google Scholar 

  • Morse, M. L., Lederberg, E., and Lederberg, J., 1956, Transduction in Escherichia coli K-12, Genetics 41: 121.

    Google Scholar 

  • Redfield, R., 1986, Structure of cryptic prophages. Thesis, Stanford University.

    Google Scholar 

  • Riley, M., 1984, Arrangement and rearrangement of bacterial genomes, in: Microorganisms as Model Systems for Studying Evolution ( R. P. Mortlock, ed.), pp. 285–316, Plenum, New York.

    Google Scholar 

  • Riley, M., and Anilionis, A., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Enterobacteriaceae, J. Bacterial. 143: 366.

    CAS  Google Scholar 

  • Sauer, R. T., Yocum, R., Doolittle, R., Lewis, M., and Pabo, C., 1982, Homology among DNA binding proteins suggests use of a conserved super-secondary structure, Nature 298: 447.

    Article  PubMed  CAS  Google Scholar 

  • Selander, R. K., and Levin, B. R., 1980, Genetic diversity and structure in Escherichia coli populations, Science 210: 545.

    Article  PubMed  CAS  Google Scholar 

  • Shen, P., and Huang, H. V., 1986, Homologous recombination in Escherichia coli: Dependence on substrate length and homology, Genetics 112:441.

    Google Scholar 

  • Simon, M. N., Davis, R. W., and Davidson, N., 1971, Heteroduplexes of DNA molecules of lambdoid phages: Physical mapping of their base sequence relationships by electron microscopy, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 313–328, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sonea, S., and Panisset, M., 1983, A New Bacteriology, Jones and Bartlett, Boston. Strathem, A., and Herskowitz, I., 1975, Defective prophage in Escherichia coli K-12 strains, Virology 67:136.

    Google Scholar 

  • Susskind, M., and Botstein, D., 1978, Molecular genetics of bacteriophage P22, Microbiol. Rev. 42:385.

    Google Scholar 

  • Walker, G. C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48: 60.

    PubMed  CAS  Google Scholar 

  • Wharton, R. P., and Ptashne, M., 1985, Changing the binding specificity of a repressor by redesigning an a-helix. Nature 316: 601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Campbell, A. (1988). Phage Evolution and Speciation. In: Calendar, R. (eds) The Bacteriophages. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5424-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5424-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5426-0

  • Online ISBN: 978-1-4684-5424-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics