Skip to main content

Influence of Gangliosides and Nerve Growth Factor on the Plasticity of Forebrain Cholinergic Neurons

  • Chapter
Receptor-Receptor Interactions

Abstract

Neurons from the medial septal nucleus and nucleus of the vertical limb of the diagonal band of Broca provide an important cholinergic input to the hippocampus (Lewis and Shute, 1967; Oderfeld-Nowak et al, 1974; Meibach and Siegel, 1977). The cortex receives a widespread distribution of cholinergic fibres, the majority of which seem to originate from the nucleus basalis magnocellularis (NBM) (Johnston et al, 1981; Fibiger, 1982; Cuello and Sofroniew, 1984). From immunohistochemical studies it would appear that a topographic representation exists for this projection (Mesulam et al, 1986; Ingham et al, 1985). These fibers represent approximately 70% of the total cholinergic component of the cortex (Lehman et al, 1982), the remainder deriving from local circuit neurons (Sofroniew et al, 1982; Johnston et al, 1981). This participation of forebrain cholinergic neurons has been emphasized in recent years since a decrease in choline acetyltransferase (ChAT) activity has been reported to occur in the cortex and in the NBM of patients with Alzheimer’s disease Bowen et al, 1983; Davies and Maloney, 1976; Perry et al, 1977; Rossor et al, 1982; Sims et al, 1983). Furthermore, a reduced number of cells in the latter area has been reported as a feature of Alzheimer’s disease (Whitehouse et al, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beal, M.F., Benoit, R., Mazurek, M.F., Bird, E.D. and Martin, J.B. (1986). Somatostatin-281–12-like immunoreactivity is reduced in Alzheimer’s disease cerebral cortex. Brain Res., 368, 380–383.

    Article  Google Scholar 

  • Bitensky, M.W., Wheeler, M.A., Mehta, H. and Miki, N. (1975). Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments. Proc. Natl. Acad. Sci. U.S.A., 72, 2572–2576.

    Article  Google Scholar 

  • Bowen, D.M., Allen, S.J., Benton, J.S., Goodhart, M.J., Haan, E.A., Palmer, A.M., Sims, N.R., Smith, D.D.T., Spillane, J.A., Esiri, M.M., Neary, D., Snowdon, J.B., Wilcock, G.K. and Davison, A.N. (1983). Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J. Neurochem., 41, 266–272.

    Article  Google Scholar 

  • Casamenti, F., Bracco, L., Bartolin, L. and Faper, G. (1985). Effects of ganglioside treatment in rats with a lesion of the cholinergic forebrain nuclei. Brain Res., 338, 45–52.

    Article  Google Scholar 

  • Cuello, A.C., Sofroniew, M.V. (1984). The anatomy of the CNS cholinergic neurons. TINS, 7, 74–78.

    Google Scholar 

  • Cuello, A.C., Milstein, D., Wright, B., Bramwell, B., Priestley, J.V. and Jarvis, J. (1984). Development and application of a monoclonal rat peroxidase anti-peroxidases ( PAP) immunocytochemical reagent. Histochemistry, 30, 257–261.

    Article  Google Scholar 

  • Cuello, A.C., Stephens, P.H., Tagari, P.D., Sofroniew, M.V. and Pearson, R.C.A. (1986). Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res. 376, 373–377.

    Article  Google Scholar 

  • Davies, P. and Maloney, A.J.F. (1976). Selective loss of central cholinergic neurons in Alzheimer’s Disease. Lancet, II, 1403.

    Google Scholar 

  • Davies, P., Katzman, R. and Terry, R.D. (1980). Reduced somatostatin-like immunoreactivity in cerebral cortex of cases of Alzheimer disease and Alzheimer senile dementia. Nature, 288, 279–280.

    Article  Google Scholar 

  • Deelers, N., Chatelain, P., Poss, A. and Ruysschaert, J.M. (1979). Specific interaction between follitropin and GM1 ganglioside incorporated into lipid membranes. Biochem. Biophys. Res. Comm., 89, 1102–1106.

    Article  Google Scholar 

  • Eckenstein, F. and Thoenen, H. (1982). Production of specific antisera and monoclonal antibodies in choline acetyltransferase. Characterization and use for identification of cholinergic neurons. EMBO J. 1, 363–368.

    Google Scholar 

  • Fibiger, H.C. (1982). The orgnaization and some projections of cholinergie neurons of the mammalian forebrain. Brain Res. Rev., 4, 327–388.

    Article  Google Scholar 

  • Gill, D.M. and King, C.A. (1975). The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Cell Biol., 250. 6424–6432.

    Google Scholar 

  • Hefti, F.A., Dravid, A. and Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res., 293, 305–309.

    Article  Google Scholar 

  • Heumann, R., Schwab, M.E., Merkl, R. and Thoenen, H. (1984). Nerve growth factor (NGF) mediated induction of choline acetyltransferase (ChAT) in PC12 cells: evaluation of the site of action of NGF and the involvement of lysosomal degradation products of NGF. J. Neurosci., 4, 3039–3050.

    Google Scholar 

  • Holmgren, J., Lonnroth, I., Mansson, J.E. and Svennerholm, L. (1975). Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. U.S.A., 72, 2520–2524.

    Article  Google Scholar 

  • Ingham, C.A., Bolam, J.P., Wainer, B.H. and Smith, A.D. (1985). A correlated light and electron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J. Comp. Neurol., 239, 176–192.

    Article  Google Scholar 

  • Johnston, M.V., McKinney, M. and Coyle, J.T. (1981). Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat. Brain Res., 43, 159–172.

    Google Scholar 

  • Korshing, S. and Thoenen, H. (1983). Quantitative demonstartion of the retrograde axonal transport of endogenous nerve growth factor. Neurosci. Lett., 39, 1–4.

    Article  Google Scholar 

  • Kurosky, A., Markel, D.E., Peterson, J.W. and Fitch, W.M. (1977). Primary structure of cholera toxin 0-chain: A glycoprotein hormone analog? Science, 195, 299–301.

    Article  Google Scholar 

  • Lehman, J., Nagy, J.I., Almadja, S. and Fibiger, H.C. (1982). The nucleus basalis magnocellularis; the origin of a cholinergic projection to the neocortex in the rat. Neuroscience, 5, 1161–1174.

    Article  Google Scholar 

  • Lewis, P.R. and Shute, C.C.D. (1967). The cholinergic limbic system: Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supra-optic crest. Brain, 90, 521–540.

    Article  Google Scholar 

  • Meibach, R.C. and Siegel, A. (1977) Efferent connections of the hippocampal formation in the rat. Brain Res., 124, 197–224.

    Article  Google Scholar 

  • Mesulam, M., Mufson, E.J. and Wainer, B.H. (1986). Three- dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilised tetramethylbenzidine method for horseradish peroxidase. Brain Res., 367, 301–308.

    Article  Google Scholar 

  • Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J., Buchanan, K. and Johnston, M.V. (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res., 1, 53–62.

    Article  Google Scholar 

  • Morrison, J.H., Rogers, J., Scherr, S., Benoit, R. and Bloom, F.E. (1985). Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature, 314, 90–92

    Article  Google Scholar 

  • Mullin, B.R., Fishman, P.H., Lee, G., Aloj, S.M., Ledley, F.D., Winand, R.J., Kohn, L.D. and Brady, R.O. (1976). Thyrotropinganglioside interactions and their relationship to the structure and function of thyrotripin receptor. Proc. Natl. Acad. Sci. U.S.A., 73, 842–846.

    Article  Google Scholar 

  • Nieto-Sampedro, M., Lewis, E.R., Cotman, C.W., Manthorpe, E.M., Skaper, S.D., Barbin, G., Longo, F.M. and Waron, S. (1982). Brain injury causes a time dependent increase in neuron trophic activity at the lesion site. Science 217, 860–861.

    Article  Google Scholar 

  • Oderfeld-Nowak, B., Narkiewicz, O., Bialowas, J., Wieraszko, A. and Gradkowska, M. (1974). The influence of septal nuclei lesions on activity of acetylcholinesterase and choline acetyltransferase in the hippocampus of the rat. Acta Neurobiol. Exp. 34, 583–601.

    Google Scholar 

  • Oderfeld-Nowak, B., Skup, M., Ulas, J., Jezierska, M., Gradkowska, R. and Zaremba, M. (1984). Effect of GM1 ganglioside treatment on post lesion responses of cholinergic neurons in rat hippocampus after various partial deafferentations. J. Neurosci. Res., 12, 409–420.

    Article  Google Scholar 

  • Perry, E.R., Perry, R.H., Blessed, G. and Roth, M. (1977). Necropsy evidence of central cholinergic deficits in senile dementia. Lancet, I, 189.

    Google Scholar 

  • Richardson, P.M., Verge-Issa, V.M.K. and Riopelle, R.J. (1986). Distribution of neuronal receptors for nerve growth factor in the rat. J. Neurosci., 6, 2312–2321.

    Google Scholar 

  • Roberts, G.W., Crow, T.J. and Polak, J.M. (1985). Location of neuronal tangles in somatostatin neurons in Alzheimer’s disease. Nature, 314, 92–94.

    Article  Google Scholar 

  • Rossor, M.N., Garret, N.J., Johnson, A.L., Mountjoy, D.Q., Roth, M. and Iversen, L.L. (1982b). A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 185, 313–330.

    Article  Google Scholar 

  • Schwab, M.E., Otten, U., Agid, Y. and Thoenen, H. (1979). Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res., 168, 473–483.

    Article  Google Scholar 

  • Sims, N.R., Bowen, D.M., Allan, S.J., Smith, C.C.T., Neary, D., Thomay, D.J. and Davison, A.N. (1983). Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem., 401 503–509.

    Article  Google Scholar 

  • Smith, R.G. and Appel, S.H. (1983). Extracts of skeletal muscle increase neurite outgrowth and cholinergic activity of fetal rat spinal motor neurons. Science, 219, 1079–1081.

    Article  Google Scholar 

  • Smith, R.G., McManaman, J. and Appel, S.H. (1986). Trophic effects of skeletal muscle extracts on ventral spinal cord neurons in vitro separation of a protein with morphologic activity from proteins with cholinergic activity. J. Cell Biol., 101, 1608–1621.

    Article  Google Scholar 

  • Smith, R.G., Vaca, K., McManaman, J. and Appel, S.H. (1985). Selective effects of skeletal muscle extract fractions on motoneuron development in vitro. J. Neurosci., 6, 439–447.

    Google Scholar 

  • Sofroniew, M.V., Eckenstein, F., Thoenen, H. and Cuello, A.C. (1982). Topography of choline acetyltransferase-containing neurons in the forebrain of the rat. Neurosci. Lett., 33, 7–12.

    Article  Google Scholar 

  • Sofroniew, M.V., Pearson, R.C.A., Cuello, A.C., Stevens, P.H. and Tagari P. (1986). The effect of parenterally administered GM1 ganglioside on retrograde degeneration of cholinergic cells of the basal forebrain of the rat. Brain Res., 398, 393–396.

    Article  Google Scholar 

  • Sofroniew, M.V., Pearson, R.C.A., Eckenstein, F., Cuello, A.C. and Powell, T.P.S. (1983). Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res., 289, 370–374.

    Article  Google Scholar 

  • Stephens, P.H., Cuello, A.C., Sofroniew, M.V., Pearson, R.D.A. and Tagari, P. (1985). The effect of unilateral decortication upon choline acetyltransferase and glutamate decarboxylase activities in the nucleus basalis and other areas of the rat brain. J. Neurochem., 45, 1021–1026.

    Article  Google Scholar 

  • Stephens, P.H., Tagari, P.C. and Cuello, A.C. (1987). Cholinergic neurons in aged rats: changes after cortical lesions. Neurobiol. Aging (submitted).

    Google Scholar 

  • Tanuichi, M., Schweitzer, J.B. and Johnson, E.M. (1986). Nerve growth factor receptor molecules in rat brain. Proc. Natl. Acad. Sci., 83, 1950–1954.

    Article  Google Scholar 

  • Toffano, G., Benvegnu, D., Bonetti, A.C., Facci, L., Leon, A., Orlando, P., Ghidoni, R. and Tettamanti, G. (1980). Interactions of GM1 ganglioside with crude rat brain neuronal membranes. J. Neurochem., 35, 861–866.

    Article  Google Scholar 

  • Van Heyningen, S. (1974). Cholera toxin: Interaction of subunits with ganglioside GM1. Science, 183, 656–666.

    Article  Google Scholar 

  • Wenk, G.L. and Olton, D.S. (1984). Recovery of neocortical ChAT activity following ibotenic acid injection into the nucleus basalis of Meynert in rats. Brain Res., 293, 184–186.

    Article  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Strubie, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982). Alzheimer’s disease and senile dementia loss of neurons in the basal forebrain. Science, 215, 1237–1239.

    Article  Google Scholar 

  • Williams, L.R., Peterson, G.M., Varon, S. and Gage, F.H. (1986). Continuous infusion of NGF prevents non-cholinergic as well as cholinergic neuronal death in the medial septum after fimbria formix transection. Society for Neuroscience 16th Annual Meeting, Washington, November 9–14, 1986, Abstr. 219.3, page 787.

    Google Scholar 

  • Wojcik, M., Ules, J. and Oderfeld-Nowak, B. (1982). The stimulating effect of ganglioside injections on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions. Neuroscience, 7, 495–499.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Cuello, A.C. et al. (1987). Influence of Gangliosides and Nerve Growth Factor on the Plasticity of Forebrain Cholinergic Neurons. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5415-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5415-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5417-8

  • Online ISBN: 978-1-4684-5415-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics