Skip to main content

Gangliosides as Modulators of Neuronotrophic Interactions

  • Chapter
Book cover Receptor-Receptor Interactions

Abstract

Basic neurobiological research has recently reconsidered the capability of the adult mammalian central nervous system (CNS) neurons to undergo adaptive functional and morphological modifications in response to external noxious perturbations (Tsukahara, 1981; Cotman and Nieto-Sampedro, 1984). This new interest mainly stems from lesion and transplantation experiments documenting an unprecedented inherent plasticity of the mature CNS neurons following brain damage. The lesioned axons are now known to possess the ability to regrow when growth-promoting signals and substrates are introduced into their environment (Richardson et al., 1980; Kromer et al., 1981). In addition, a growing number of studies have provided evidence for a naturally occurring sprouting ability of intact axons following partial deafferentation (Cotman and Nieto-Sampedro, 1984). Yet loss of neuronal connectivity and function are still today common consequences of brain damage in the adult. What is critically needed is the comprehension of the cellular and molecular mechanisms underlying mature CNS plasticity following injury and its relationship to repair. Hopefully, this will in the near future provide novel ways for ameliorating the outcome following brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bremer, E.G., Hakomori, S.I., Bowen-Pope, D., Raines, E. and Ross, R. (1984). Ganglioside-mediated modulation of cell growth, growth factor binding and receptor phosphorylation. J. Biol. Chem., 259, 6818–6825.

    Google Scholar 

  • Cotman, C.W. and Nieto Sampedro, M. (1984). Cell biology of synaptic plasticity. Science, 225, 1287–1294.

    Article  Google Scholar 

  • Cowan, W.M., Fawcett, J.W., O’Leary, D.D.M. and Stanfield, B.B. (1984). Regressive events in neurogenesis. Science, 225, 1258–1265.

    Article  Google Scholar 

  • Doherty, P., Dickson, J.G., Flanigan, T.P. and Walsh, F.S. (1985). Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J. Neurochem., 44, 1259–1265.

    Article  Google Scholar 

  • Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R. and Tettamanti, G. (1984). Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous ganglioside. Relationship between the effect and the cell association of ganglioside GM1. J. Neurochem., 42, 299–305.

    Article  Google Scholar 

  • Ferrari, G., Fabris, M. and Gorio, A. (1983). Gangliosides enhance neurite outgrowth in PC12 cells. Devl. Brain Res., 8, 215–221.

    Article  Google Scholar 

  • Hefti, F. (1986). Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci., 6, 2155–2162.

    Google Scholar 

  • Kasarskis, E.J., Karpiak, S.E., Rapport, M.M., Yu, R.K. and Bass, N.H. (1981) Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to gangliosides. Devel. Brain Res., 1, 25–35.

    Article  Google Scholar 

  • Kromer, L.F., Björklund, A. and Stenevi, U. (1981). Regeneration of the septo hippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges. Brain Res., 210, 173–200.

    Article  Google Scholar 

  • Ledeen, R.W., Yu, R.K., Rapport, M.M. and Suzuki, K. (1984). Ganglioside Structure, Function and Biomedical Potential. Plenum Press, New York.

    Book  Google Scholar 

  • Leon, A., Benvegnù, D., Dal Toso, R., Presti, D., Facci, L., Giorgi, O. and Toffano, G. (1984). Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GM1 effects on neuronal repair. J. Neurosci. Res., 12, 277–287.

    Article  Google Scholar 

  • Leon, A., Benvegnù, D., Dal Toso, R., Giorgi, 0., Presti, D., Tettamanti, G. and Toffano G. (1986). Neuronal cell cultures and monosialoganglioside: a model for comprehension of mechanisms underlying central nervous system repair. In Experimental Brain Research, Supplementum 13: Processes of Recovery from Neural Trauma. (eds. G.M. Gilad, A. Gorio and G.W. Kreutzberg ). Springer-Verlag, Berlin.

    Google Scholar 

  • Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S. and Cotman, C.W. (1983). Injury-induced neuronotrophic activity in adult rat brain. Correlation with survival of delayed implants in a wound cavity. J. Neurosci., 3, 2219–2229.

    Google Scholar 

  • Radsak, K., Schwarzmann, G. and Wiegandt, H. (1981). Studies of the cell association of exogenously added sialoglycolipids. Z. Physiol. Chem., 363, 263–272.

    Article  Google Scholar 

  • Richardson, P.M., Mc Guinnes, U.M. and Aguayo, A.J. (1980). Axons from CNS neurons regenerate into PNS grafts. Nature, 284, 264–265.

    Article  Google Scholar 

  • Schwartz, M. and Spirman, N. (1982). Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity purified antiganglioside antibodies. Proc. Natl. Acad. Aci. USA, 79, 6080–6083.

    Article  Google Scholar 

  • Schwartzmann, G., Hoffmann-Bleihauer, P., Shubert, J., Sandhoff, K. and Marsh, D. (1983). Incorporation of ganglioside into analogues into fibroblast cell membranes. A spin label study. Biochemistry, 22, 5041–5048.

    Article  Google Scholar 

  • Skaper, S.D., Katoh-Semba, R. and Varon, S. (1985). GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Devl. Brain Res., 23, 19–26.

    Google Scholar 

  • Sparrow, J.R., Mc Guinnes, C., Schwartz, M. and Grafstein, B. (1984). Antibodies to gangliosides inhibit goldfish optic nerve regeneration in vivo. J. Neurosci. Res., 12, 233–243.

    Article  Google Scholar 

  • Spirman, N., Sela, B.A. and Schwartz, M. (1982). Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish explants. J. Neurochem., 39, 874–877.

    Article  Google Scholar 

  • Svennerholm, L. (1963). Chromatographic separation of human brain gangliosides. J. Neurosci., 10, 613–623.

    Google Scholar 

  • Toffano, G. and Leon, A. (1986). Central nervous system repair and nerve cell cultures. Pharmacol. Res. Commun., 18, 187–201.

    Article  Google Scholar 

  • Toffano, G., Agnati, L.F. and Fuxe, K.G. (1986). The effect of the ganglioside GMl on neuronal plasticity. Int. J. Devl. Neurosci., 4, 97–100.

    Article  Google Scholar 

  • Tsukahara, N. (1981). Synaptic plasticity in the mammalian central nervous system. Ann. Rev. Neurosci., 4, 351–379.

    Article  Google Scholar 

  • Varon, S., Manthorpe, M. and Williams, L.R. (1984). Neuronotrophic and neurite-promoting factors and their clinical potentials. Dev. Neuroscience, 6, 73–100.

    Article  Google Scholar 

  • Varon, S., Williams, L.R. and Gage, F.H. (1986). Exogenous administration of neuronotrophic factors in vivo protects CNS neurons against axotomy-induced degeneration. Progress in Brain Res., In Press.

    Google Scholar 

  • Whittemore, S.R., Nieto-Sampedro, M., Needels, D.L. and Cotman, C.W. (1985). Neuronotrophic factors for mammalian brain neurons: injury induction in neonatal, adult and aged brains. Develop. Brain Res., 20, 169–178.

    Article  Google Scholar 

  • Will, B. and Hefti, F. (1985). Behavioural and neurochemical effects of chronic intraventricular injections of nerve growth factor in adult rats with fimbria lesions. Behay. Brain Res., 17, 17–24.

    Article  Google Scholar 

  • Willinger, M. and Schackner, M. (1980). GMl ganglioside as a marker for neuronal differentiation in mouse cerebellum. Develop. Biol., 74, 101–107.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Toffano, G. et al. (1987). Gangliosides as Modulators of Neuronotrophic Interactions. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5415-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5415-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5417-8

  • Online ISBN: 978-1-4684-5415-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics