Skip to main content

Adenosine Triphosphate: ‘Pre-transmitter’, Co-transmitter or Modulator at the Skeletal Muscle?

  • Chapter
Receptor-Receptor Interactions

Part of the book series: Wenner-Gren Center International Symposium Series ((WGCISS))

  • 46 Accesses

Abstract

Burnstock (1982) has summarized evidence suggesting that adenosine triphosphate (ATP) acts as a co-transmitter or neuromodulator in a variety of tissues. This paper concerns ATP and the neuromuscular junction of skeletal muscle and also the embryonic muscle cell, represented by cultured myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo, S., Zani, B. M., Nervi, C., Senni, M. I., Molinaro, M. & Eusebi, F. (1985) Acetylcholine stimulation phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Lett., 190, 161–164.

    Article  Google Scholar 

  • Abood, L.G., Koketsu, K. & Miyamoto S. (1962) Outflux of various phosphates during membrane depolarization of excitable membranes. Am. J. Physiol., 202, 469–474.

    Google Scholar 

  • Akasu, T., Hirai, K. & Koketsu, K. (1981) Increase in acetylcholine receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity. Br. J. Pharmac., 74, 505–507.

    Google Scholar 

  • Berridge, M.J. & Irvine, R.F. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–321.

    Article  Google Scholar 

  • Buchthal, F. & Folkow, B. (1948) Interaction between acetylcholine and adenosine triphosphate in normal, curarized and denervated muscle. Acta Physiol. Scand., 15, 150–160.

    Google Scholar 

  • Burnstock, G. & Kennedy, C. (1985) Is there a basis for distingguishing two types of P2-purinoceptor ? Gen. Pharmac., 16, 433–440.

    Google Scholar 

  • Desmedt, J.E. (1978) Muscular dystrophy contrasted with denervation: different mechanisms underlying spontaneous fibrillations. In Contemporary clinical neurophysiology. eds. WA Cobb & H Van Duijm). Elsevier, ART6751W.

    Google Scholar 

  • Dowdall, M.J., Boyne, A.F. & Whittaker, V.P. (1974) Adenosine triphosphate, a constituent of cholinergic synaptic vesicles. Biochem. J., 140, 1–12.

    Google Scholar 

  • Eusebi, F., Molinaro, M. & Zani, B.M. (1985) Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J. Cell. Biol., 100, 339–1343.

    Article  Google Scholar 

  • Ewald, D.A.J. (1976) Potentiation of postjunctional sensitivity of rat diaphragm by high-energy-phosphate adenine nucleotides. J. Membr. Biol., 29, 47–65.

    Article  Google Scholar 

  • Gilliat, R.W. & Westgaard, R.H. (1978) Nerve-muscle interactions. In Contemporary clinical neurophysiology. (eds. WA Cobb &; H Van Duijm) Elsevier, Amsterdam.

    Google Scholar 

  • Ginsborg, B.L. & Hirst, G.D.S. (1972) The effect of adenosine on the release of transmitter from the phrenic nerve of the rat. J. Physiol. (Lond.), 224, 629–645.

    Google Scholar 

  • Giompres, P.E., Zimmermann, H. & Whittaker, V.P. (1981) Changes in the biochemical and biophysical parameters of cholinergic synaptic vesicles on transmitter release and during subsequent period of rest. Neuroscience, 6, 775–785.

    Article  Google Scholar 

  • Gordon, A.S., Guillory, R.J., Diamond, I. & Hucho, F. (1979) ATP-binding proteins in acetylcholine receptor enriched membranes. FEBS Lett., 108, 37–39.

    Article  Google Scholar 

  • Grondai, E.J.M. & Zimmermann, H. (1986) Ectonucleotidase activities associated with cholinergic synaptosomes isolated from Torpedo electric organ. J. Neurochem., 47, 871–881.

    Article  Google Scholar 

  • Häggblad, J. (1986) Neuromuscular junction revisited: Biochemical studies on mechanisms involved in transmission events. Doctoral dissertation, manuscript. University of Stockholm, Sweden.

    Google Scholar 

  • Häggblad, J. & Heilbronn, E. (1986) Externally applied ATP causes inositol triphosphate accumulation in cultured chick myotubes. Neurosci Lett., in press.

    Google Scholar 

  • Häggblad, J., Eriksson, H., Hedlund, B. & Heilbronn, E. (1986) Forskolin blocks agonist mediated permeabilitx of chick myotube nicotinic receptors and inhibits binding of H-phencyclidine to Toredo microsac nicotinic receptors. Naunyn Schm. Arch. Pharmac., submitted.

    Google Scholar 

  • Häggblad, J., Eriksson, H., & Heilbronn., E. (1985a) ATP induced cation influx in myotubes is additive to cholinergic agonist action. Acta Physiol. Scand., 125, 389–393.

    Google Scholar 

  • Häggblad, J., Eriks§pn, H., & Heilbronn, E. (1985b) Effects of extracellular ATP on Rb-influx in chick myotubes: Indications of a cotransmitter role in neuromuscular transmission. In Molecular basis of nerve activity. (eds. J-P Changeux, F Hucho, A Maelicke & E Neumann) Walter de Gruyter, Berlin, New York.

    Google Scholar 

  • Heilbronn, E. & Häggblad, J. (1986) A case for ATP as a neurotransmitter and trigger of postsynaptic Ca-release at the neuromuscular junction? In Cellular and molecular basis of cholinergic funtion. (ed. M J Dowda, in press.Heppl, L.A., Weisman, G.A. & Friedberg, I. (1985) Permeabilization of transformed cells in culture by external ATP. J. Membr. Biol., 86, 189–196.

    Google Scholar 

  • Herbison, G. J., Jaweed, M.M. & Ditunno, J. F. (1983) Acetylcholine sensitivity and fibrillation potentials in electrically stimulated crush denervated rat sekeltal muscle. Arch. Phys. Med. Rehabil. 64, 217–220.

    Google Scholar 

  • Huganir, R. L., Delcour, A. H., Greengard, P., and Hess, G. P. (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature, 321, 774–775.

    Article  Google Scholar 

  • Israel, M., Lesbats, B., Manaranche, R., Meunier, F.M. & Frachon, P. (1980) Retrograde inhibition of transmitter release by ATP. J. Neurochem., 34, 923–932.

    Article  Google Scholar 

  • Kolb, H.A. & Wakelam, M.J.O. (1983) Transmitter-like effects of ATP on patched membranes of cultured myoblaste and myotubes. Nature, 303, 621–623.

    Article  Google Scholar 

  • Kuffler, S.W. & Nicholls, J.G. (1976) From neurone to brain. Sinauer Ass. Inc., Sunderland, MA, USA.

    Google Scholar 

  • LOmo, T. (1976) The role of activity in the control of membrane and contractile properties of skeletal muscle. In Motor innervation of muscle. (ed. S Thesleff). Academic Press, London.

    Google Scholar 

  • LOmo, T. & Westgaard, R. H. (1975) Further studies on the control of ACh sensitivity by muscle activity in the rat. J. Physiol (Lond.), 252, 603–626.

    Google Scholar 

  • Meunier, F.M. & Morel, N. (1978) Adenosine uptake by cholinergic synaptosomes from Torpedo electric organ. J. Neurochem., 31, 845–851.

    Article  Google Scholar 

  • Middleton, P., Jaramillo, F. & Schuetze, S.M. (1986) Forskolin increases the rate of acetylcholine receptor desensitization in rat soleus endplates. Proc. Natl. Acad. Sci. USA, 83, 4967–4971.

    Article  Google Scholar 

  • Miyamoto, M.D. & Breckenridge, B.McL. (1974) A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction. J. Gen. Physiol., 63, 609–624.

    Article  Google Scholar 

  • Nemeth, P.M. (1982) Electrical stimulation of denervated muscle prevents decreases in oxidative enzymes. Muscle & Nerve, 5, 134–139.

    Article  Google Scholar 

  • Nix, W. A. (1982) The effect of low-frequency electrical stimulation on the denervated extensor digitorum longus muscle of the rabbit. Acta Neurol. Scand., 66, 521–528.

    Google Scholar 

  • Ribeiro, J.A. & Dominguez, M.L. (1978) Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J. Physiol. (Paris), 74, 491–496.

    Google Scholar 

  • Ribeiro, J.A. & Sebastiao, A.M. (1985) On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br. J. Pharmac., 84, 911–918.

    Google Scholar 

  • Ribeiro, J.A. & Sebastiao, A.M. (1986) Adenosine receptors and calcium: Basis for proposing a third (A3) adenosine receptor. Prog. Neurobiol., 26, 179–209.

    Google Scholar 

  • Ribeiro, J.A. & Walker, J. (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br. J. Pharmac., 54, 213–218.

    Google Scholar 

  • Rozengurt, E., Heppel, L.A. & Friedberg, I. (1977) Effect of exogenous ATP on the permeability properties of transformed mouse cell lines. J. Biol. Chem., 252, 4584–4590.

    Google Scholar 

  • Sekar, M.C. & Hokin, L.E. (1986) The role of phosphoinositides in signal transduction. J. Membr. Biol., 89, 193–210.

    Article  Google Scholar 

  • Silinsky, E.M. (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J. Physiol. (Lond.) 346:243–256.

    Google Scholar 

  • Silinsky, E.M. & Ginsborg, B.L. (1983) Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not by adenosine. Nature, 305, 327–328.

    Article  Google Scholar 

  • Silinsky, E.M. & Hubbard, J.I. (1973) Release of ATP from rat motor nerve terminals. Nature, 234, 404–405.

    Article  Google Scholar 

  • Suskiw, J.B. & Pilar, G. (1976) Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals. J. Neurochem., 26, 1133–1138.

    Article  Google Scholar 

  • Tashiro, T. & Stadtler, H. (1978) Chemical compositions of cholinergic synaptic vesicles from Torpedo marmorata based on improved purification. Eur. J. Biochem., 90, 479–487.

    Article  Google Scholar 

  • Valencic, V., Vodovnok, L., Stefancic, M. & Jelnikas, T. (1986) Improved motor response due to chronic electric stimulation of denervated tibialis anterior muscle in humans. Muscle & Nerve, 9, 612–617.

    Article  Google Scholar 

  • Vergara, J., Tsien, R.Y. & Delay, M. (1985) Inositol 1,4,5trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc. Natl. Acad. Sci. USA, 82, 6352–6356.

    Article  Google Scholar 

  • Volknandt, W. & Zimmermann, H. (1986) Acetylcholine, ATP and proteoglycan are common to synaptic vesicles isolated from electric organs of electric eel and electric catfish as well as from rat diaphragm. J. Neurochem., 47, 1449–1462.

    Article  Google Scholar 

  • Volpe, P., DiVirgilio, F., Pozzan, T. & Salviati, G. (1986) Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle. FEBS Lett., 197, 1–4.

    Article  Google Scholar 

  • Wagner, J.A., Carlson, S.S. & Kelly, R.B. (1978) Chemical and physical characterization of cholinergic synaptic vesicles. Biochemistry, 17, 1199–1206.

    Article  Google Scholar 

  • Weisman, G.A., De, B.K., Friedberg, I., Pritchard, R.S. & Heppel, L.A. (1984) Cellular responses to external ATP which precede an increase in nucleotide permeability in transformed cells. J. Cell. Physiol., 119, 211–219.

    Article  Google Scholar 

  • Zimmermann, H. & Bokor, J.T. (1979) ATP recycles independently of ACh in cholinergic synaptic vesicles. Neurosci. Lett., 13, 319–324.

    Google Scholar 

  • Zimmermann, H. & Whittaker, V.P. (1974) Effect of electrical stimulation on the yield and composition of synaptic vesicles from cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J. Neurochem., 22, 435–450.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Heilbronn, E., Häggblad, J. (1987). Adenosine Triphosphate: ‘Pre-transmitter’, Co-transmitter or Modulator at the Skeletal Muscle?. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5415-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5415-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5417-8

  • Online ISBN: 978-1-4684-5415-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics