Skip to main content

Receptor Mediated Activation of Phospholipase A2: Arachidonic Acid and its Metabolites as Second Messengers

  • Chapter
Receptor-Receptor Interactions

Abstract

GTP binding proteins, called G or N proteins, are involved in receptor-mediated signal transduction in cells. Certain GTP binding proteins, NS or Ni, have been shown to cause the activation or inhibition, respectively, of adenylate cyclase (Rodbell, 1980).The transducing N proteins are heterotrimers consisting of α, β, and γ subunits (Gilman, 1984). When a ligand interacts with a membrane receptor, GDP, which is bound to the α subunit of the N protein, is replaced by GTP. This sets off a cascade of biochemical reactions in which the α subunit dissociates from the βγ subunit. The GTP-bound α subunit of NS then interacts with the adenylate cyclase to enhance conversion of ATP to cyclic AMP.This series of reactions is terminated by the ability of the α subunit to function as a GTPase to hydrolyze the bound GTP to GDP. When this happens the α subunit reassociates with the βγ subunit to terminate the reaction. The actions of the NSα subunit on adenylate cyclase can be prolonged by the addition of GTPγS, a GTP analogue that is only slowly hydrolyzed by GTPase. The stimulatory NSα can also be directly activated by cholera toxin which acts by ADP ribosylating the NSα subunit. This then stimulates adenylate cyclase to generate cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge, M.J. and Irvine, R.F. (1985): Inositol triphosphate,a novel second messenger in cellular signal transduction. Nature 312, 334–336.

    Google Scholar 

  • Breitwieser, G.F. and Szabo, G. (1985): Uncoupling of cardiac muscarinic and 8-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317, 538–540.

    Article  Google Scholar 

  • Burch, R.M., Luini, A. and Axelrod, J. (1986a): Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to al-adrenergic stimulation in FRTL5 thyroid cell. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Burch, R.M., Luini, A., Mais, D.E., Corda, D., Vanderhoek, J.Y., Kohn, L.D. and Axelrod, J. (1986b): al-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. J. Biol. Chem., 261, 11236–11241.

    Google Scholar 

  • Cockcroft, S. and Gomperts, B.D. (1985): Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 334–336.

    Article  Google Scholar 

  • Cooper, C.L. and Malik, K.U. (1985): Prostaglandin synthesis and renal vasoconstriction elicited by adrenergic stimuli are linked to activation of al-adrenergic receptors in the isolated rat kidney. J. Pharmcol. Exp. Ther., 233, 24–31.

    Google Scholar 

  • Corda, D. and Kohn, L.D. (1985): Thyrotropin upregulates aladrenergic receptors in rat FRTL-5 thyroid cells. Proc. Natl. Acad. Sci. USA 82, 8677–8680.

    Article  Google Scholar 

  • Corda, D., Marcocci, C., Kohn, L.D., Axelrod, J. and Luini, A. (1985): Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of al-adrenergic receptors in cultured rat thyroid cells. J. Biol. Chem., 260, 9230–9236.

    Google Scholar 

  • Fung, B.K.-K., Hurley, J.B. and Stryer, L. (1981): Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. USA 78, 152–156.

    Article  Google Scholar 

  • Gilman, A.G. (1984). G proteins and dual control of adenylate cyclase. Cell36, 577–579.

    Article  Google Scholar 

  • Hirata, F., Corcoran, B.A., Venkatasubramanian, K., Schiffmann, E. and Axelrod, J. (1979): Chemoattractants stimulate degeneration of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc. Natl. Acad. Sci. USA 76, 2640–2643.

    Article  Google Scholar 

  • Holz, G.G., Rane, S.G. and Dunlap, K. (1986): GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672.

    Article  Google Scholar 

  • Jelsema, C.L. Light activation of phospholipase A2 in rod outer segments of bovine retina and its modulation by GTP-binding proteins. J. Biol. Chem., in press.

    Google Scholar 

  • Jelsema, C.L. and Axelrod, J. (1986): The BY subunits of GTP binding protein activate and the a subunit inhibits phospholipase A2. Cell Biol. Abstract.

    Google Scholar 

  • Kohn, L.D., Aloj, S.M., Tombaccini, D., Rotella, C.M., Toccafondi, R., Marcocci, C., Corda, D. and Grollman, E.F. (1985): The Thyrotropin Receptors. In Biochemical Actions of Hormones (ed. G. Litwack). Academic Press, NY. 12, 457–512.

    Google Scholar 

  • Leeb-Lundberg, L.M.F., Cotcchia, J., Lomasney, J.N., DeBernandis, J.F., Lefkowitz, R.J. and Caron, M.B. (1985): Phorbol esters promote al-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. USA 82, 5651–5656.

    Article  Google Scholar 

  • Lewis, D.L., Weight, F.F. and Luini, A. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Malmsten, C.L., Palmblad, J., Uden, M.-M., Radmark, 0., Engstedt, L. and Samuelsson, B. (1980): Leukotriene 84: a highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes. Acta Physiol. Scand., 110, 449.

    Article  Google Scholar 

  • Nakamura, T. and Ui, M. (1985) Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J. Biol. Chem., 260, 3584–3593.

    Google Scholar 

  • Ohta, H., Okajima, F. and Ui, M. (1985): Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem., 260, 15771–15780.

    Google Scholar 

  • Philp, N.J. and Grollman, E.F. (1986): Stimulation of inositol phosphate formation in cultured rat thyroid cells. FEBS Lett., 202, 193–196.

    Article  Google Scholar 

  • Rodbell, M. (1980): The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 6, 17–22.

    Article  Google Scholar 

  • Smith, C.D., Cox, C.C. and Snyderman, R. (1986): Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science 232, 97–100.

    Article  Google Scholar 

  • Ui, M. (1984): Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Tr. Pharmacol. Sci., 5, 277–279.

    Article  Google Scholar 

  • Wolf, B.A., Turk J., Sherman, W.R. and McDaniel, M.L. (1986): Intracellular Cal+ mobilization by arachidonic acid. J. Biol. Chem., 261, 3501–3511.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Axelrod, J., Burch, R.M., Jelsema, C.L. (1987). Receptor Mediated Activation of Phospholipase A2: Arachidonic Acid and its Metabolites as Second Messengers. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5415-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5415-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5417-8

  • Online ISBN: 978-1-4684-5415-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics