Skip to main content

Ecological Significance of Siderophores in Soil

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

Among the extracellular secondary metabolites, microbial iron-chelating compounds, also called siderophores, have received considerable attention. The ecological interest in these compounds is gradually increasing, especially in terms of the possible function of these compounds in soil The current increasing interest and research on bacterial siderophores is to a great extent linked to investigations on the inoculation of plant seeds with fluorescent Pseudomonas spp. that are considered to produce siderophores counteracting deleterious microorganisms in the root zone. The research on the ecology of fungal siderophores has been focused on the role of the fungal siderophores in the acquisition of iron by plants. Much of the knowledge on siderophores is based on observations in vitro. There are, however, considerable differences between the environmental circumstances in soil and in synthetic media. Given these facts, it is of interest to consider the points on which the ecological research on siderophores should focus in order to obtain a better understanding of their role in the soil environment. It is our intention in this chapter to review the ecological significance of siderophores in natural environments such as the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl, P., Voisard, C., and Defago, G., 1986, Iron bound-siderophores, cyanic acid and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain, J. Phytopathol 116:121–134.

    Article  CAS  Google Scholar 

  • Akers, H. A., 1981, The effect of waterlogging on the quantity of microbial iron chelators (siderophores) in soil, Soil Scl 132:150–152.

    Article  Google Scholar 

  • Akers, H.A., 1983a, Multiple hydroxamic acid microbial chelators (siderophores) in soils, Soil Sei. 135:156–160.

    CAS  Google Scholar 

  • Akers, H. A., 1983b, Isolation of the siderophore schizokinen from soil of rice field, Appl. Environ. MierobioL 45:1704–1706.

    CAS  Google Scholar 

  • Atkin, C. L., Neilands, J. B., and Pfaff, H. J., 1970, Rhodotorulic acid from species of Leu- cosporidium, Rhodosporidium, Rhodoturula, Sporodia bolus andSporobolomyees and new alanine-containing ferrichrome from Cryptoeoeeus melibiosum, J. Bacteriol 103:722–733.

    PubMed  CAS  Google Scholar 

  • Bakker, P. A. H. M., Weisbeek, P. J., and Schippers, B., 1986, The role of siderophores in plant growth stimulation by fluorescent Pseudomonas spp. Med. Fac. Landbouww. Rijksuniv. Gent. 51:1357–1362.

    Google Scholar 

  • Becker, J. O., Hedges, R. W., and Messens, E., 1985, Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl. Environ. Microbiol. 49:1090–1093.

    PubMed  CAS  Google Scholar 

  • Becker, J. O., Messens, E., and Hedges, R. W., 1986, A convenient autoradiographic technique for the study of uptake of minerals by plants roots and the effects of environmental factors upon the process. Plant Soli 92:299–302.

    Article  CAS  Google Scholar 

  • Bienfait, H. F., Druivenvoorden, J., and Verkerke, W., 1982, Ferric reduction of roots of chlorotic bean plants: Indications for an enzymatic process, J. Plant Nutr. 5:451–457.

    Article  CAS  Google Scholar 

  • Bienfait, H. F., Bino, R. J., Van den Bliek, A. M., Duivenvoorden, J. F., and Fontain, J. M., 1983, Characterisation of ferric reducing activity in roots of Fe deficient Phaseolus vulgaris, Physiol. Plant 59:196–202.

    Article  CAS  Google Scholar 

  • Bossier, P., and Verstraete, W., 1986a, A direct bioassay for the detection of hydroxamate siderophores in soil. Soil Biol. Biochem. 18:481–486.

    Article  CAS  Google Scholar 

  • Bossier, P., and Verstraete, W., 1986b, Ecology of Arthrobacter JG9 detectable hydroxamate siderophores in soils. Soil Biol Biochem. 18:487–492.

    Article  CAS  Google Scholar 

  • Brown, A. E., and Swinburne, T. R., 1981, Influence of iron and iron chelators on formation of progressive lesions of Colletotrichum musae on banana fruits. Trans. Br. Mycol. Soc. 77:119–124.

    Article  CAS  Google Scholar 

  • Burnham, B. F., and Neilands, J. A., 1961, Studies of the metabolic function of the ferrichrome compounds, J. Biol. Biochem. 236:554–559.

    CAS  Google Scholar 

  • Burr, T. J, and Caesar, A., 1984, Beneficial plant bacteria, Crit. Rev. Plant Sei. 2(l):l-20.

    Google Scholar 

  • Chariang, G., Bradford, N., Horowitz, N., and Horowitz, R. M., 1981, Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum, Mol. Cell Biol. 1:94–100.

    Google Scholar 

  • Cline, G. R., Reid, C. P. P., Powell, P. E., and Szaniszlo, P. J., 1984, Effect of a hydroxamate siderophore on iron absorption by sunflower and sorghum. Plant Physiol. 76:36–39.

    Article  PubMed  CAS  Google Scholar 

  • Crueger, W., and Zähner, H., 1968, Stoffwechselproduktie von Mikroorganismen. 70 Mitteilung. Uber der Einfluss der Kohlenstoffquelle auf die Sideraminebildung vonAspergillus melleus Yukawa, Arch. Mikrobiol 63:376–384.

    Article  PubMed  CAS  Google Scholar 

  • Demange, P., Wendenbaum, S., Bateman, A., Dell, A., Meyer, J. M., and Abdallah, M. A., 1985, Bacterial siderophores: Structure of pyoverdine and related compounds, Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Deweger, L. A., Van Boxtel, R., Van der Burg, B., Gruters, R. A., Geels, F. P., Schippers, B., and Lugtenberg, B., 1986, Siderophores and outer membrane proteins of antagonistic, plant growth stimulating root-colonizing Pseudomonas spp, J. Bacteriol. 165:585–594.

    CAS  Google Scholar 

  • El Sayed, A., Verhe, R., Proot, M., Sandra, P., and Verstraete, W., 1986a, Binding of nitrite- N on polyphenols during nitrification. Plant Soil 94:369–382.

    Article  Google Scholar 

  • El Sayed, A., Vandenabeele, J., and Verstraete, W., 1986b, Nitrification and organic nitrogen formation in soils. Plant Soil 94:383–400.

    Article  Google Scholar 

  • El Sayed, A., Van Cleemput, O., and Verstraete, W., 1986c, Nitrification mediated nitrogen immobilization in soils.Plant Soil 94:401–440.

    Article  Google Scholar 

  • Emery, T., 1966, Initial steps in the biosynthesis of ferrichrome: Incorporation of 6-N- hydroxyomithine and 5-N-acetyl 5-N-hydroxyomithine,Biochemistry 5:3694–3701.

    Article  PubMed  CAS  Google Scholar 

  • Focht, D. D., and Verstraete, W., 1977, Biochemical ecology of nitrification and denitrifi- cation, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.) pp. 135–214. Plenum Press. New York.

    Google Scholar 

  • Frederick, C. B., Szaniszlo, P. J., Vickrey, P. E., Bentley, M. D., and Shive, W., 1981, Production and isolation of siderophores from the soil fungus Epicoccum purpurascens. Biochemistry 20:2432–2436.

    Google Scholar 

  • Grimes, H. D., and Mount, M. S., 1984, Influence of Pseudomonas putida in nodulation of Phaseolus vulgaris. Soil Biol Biochem. 16:27–30.

    Article  Google Scholar 

  • Haider, K., Mosier, A., and Heinemeyer, O., 1985, Phytotron experiments to evaluate the effect of growing plants on denitrification. Soil Sei. Soc. Am. J. 49:636–641.

    Article  CAS  Google Scholar 

  • Haller, T., and Stolp, H., 1985, Quantitative estimation of root exudation of maize plants. Plant Soil 86:207–216.

    Article  CAS  Google Scholar 

  • Harrington, G. J., and Neilands, J. B., 1982, Isolation and characterisation of dimerumic acid from Verticillium dahliae, J. Plant Nutr. 5:675–682.

    Article  CAS  Google Scholar 

  • Hemming, B. C, Orser, C., Jacobs, D. L., Sands, D. C, and Strobel, G. A., 1982, The effects of iron on microbial antagonism by fluorescent Pseudomonads, J. Plant. Nutr. 5:683–702.

    Article  CAS  Google Scholar 

  • Hohnadel, D., and Meyer, J. M., 1985, Pyoverdine-facilitated iron uptake among fluorescent pseudomonads. Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Huschka, H., Naegeli, H. V., Leuenberger-Ryf, H., Keller-Schierlein, W., and Winkelmann, G., 1985, Evidence for a common siderophore transport system but different sidero- phore receptors in Neurospora crassa, J. Bacteriol. 162:715–721.

    CAS  Google Scholar 

  • Iswandi, A., 1986, Seed inoculation with Pseudomonas spp., Ph.D. Thesis, State University of Gent, Faculty of Agricultural Sciences, Belgium.

    Google Scholar 

  • Jalal, M. A. F., Mocharia, R., Barnes, C. L., Hossain, M. B., Powell, D. G., Eng-Wilmot, D. L., Grayson, S. L., Benson, B. A., and Van der Helm, D., 1984, Extracellular siderophores from Aspergillus ochraceous, J. Bacteriol. 158:683–688.

    CAS  Google Scholar 

  • Jurkevitch, E., Hadar, Y., and Chen, Y., 1985, The effect of Pseudomonas siderophores on iron nutrition of peanuts. Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Kloepper, J. W., Leong, L., Teintze, M., and Schroth, M. N., 1980a, Enhanced plant growth by siderophores produced by PGPR, Nature 286:885–886.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980b, Pseudomonas sidero- phores: A mechanism explaining disease suppressive soils, Curr. Microbiol. 4:317–320.

    Article  CAS  Google Scholar 

  • Knüsel, F., Schiess, B., and Zimmermann, W., 1969, The influence exerted by sideromycins on poly-U-directed incorporation of phenylalanine in the S-30 fraction of Staphylococcus aureus. Arch. Mikrobiol. 68:99–106.

    Article  PubMed  Google Scholar 

  • Kraffczyck, J., Trolldenier, G., and Beringer, H., 1984, Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16:315–322.

    Article  Google Scholar 

  • Lindsay, W. L., 1979,Chemical Equilibria in Soils, Wiley-Interscience, New York.

    Google Scholar 

  • Meyer, J. M., and Abdallah, M. A., 1978, The fluorescent pigment ofPseudomonas fluores- cens: Biosynthesis, purification and physico-chemical properties,J. Gen. Microbiol. 107:321–331.

    Google Scholar 

  • Murray, T., Lazaridis, I., and Seddon, B., 1985, Germination of spores of Bacillus brevis and inhibition by gramicidin S: A strategem for survival, Lett. Appl. Microbiol. 1:63–65.

    Article  Google Scholar 

  • Neilands, J. B., 1979, Biomedical and environmental significance of siderophores, in: Trace Metals in Health and Disease (N. Kharash, ed.) pp. 27–41, Raven Press, New York.

    Google Scholar 

  • Neilands, J. B., 1981, Iron absorption and transport in microorganisms,Annu. Rev. Nutr. 1:27–46.

    Article  PubMed  CAS  Google Scholar 

  • Neilands, J. B., 1982, Iron envelope proteins, Annu. Rev. Microbiol. 36:285–309.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, R. A., Brown, J. C, Bennett, J. H., and Blume, D., 1982, Reduction of Fe3+ as it relates to Fe chlorosis, J. Plant Nutr. 5:433–447.

    Article  CAS  Google Scholar 

  • Page, E. R., 1966, Sideramines in plants and their possible role in iron metabolism, Biochem. J. 100:34.

    Google Scholar 

  • Page, W. J., and Dale, P. L., 1986, Stimulation of Agrobacterium tumefaciens growth by Azotabacter vinelandii ferrisiderophores, Appl. Environ. Microbiol. 51:451–454.

    PubMed  CAS  Google Scholar 

  • Page, W. J., and Huyer, M., 1984, Derepression of theAzotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 158:496–502.

    PubMed  CAS  Google Scholar 

  • Perlman, D., 1965, Microbial production of metal-organic compounds and complexes, in: Advances in Applied Microbiology, Vol. 7 (W. W. Umbreit, ed.), pp. 103–138, Academic Press, New York.

    Google Scholar 

  • Philson, S. B., and Llinas, M., 1982, Siderochromes from Pseudomonas fluorescens. I. Isolation and characterisation, J. Biol. Chem. 257: 8081–8085.

    PubMed  CAS  Google Scholar 

  • Powell, P. E., Cline, G. R., Reid, C. P. P., and Szaniszlo, P. J., 1980, Occurrence of hydrox- amate siderophore iron chelators in soils. Nature 287:833–834.

    Article  CAS  Google Scholar 

  • Powell, P. E., Szaniszlo, P. J., Cline, G. R., and Reid, C. P. P., 1982, Hydroxamate siderophores in the iron nutrition of plants, J. Plant Nutr. 5:653–673.

    Article  CAS  Google Scholar 

  • Powell, P. E., Szaniszlo, P. J., and Reid, C. P. P., 1983, Confirmation of occurrence of hydroxamate siderophores in soil by a novel Escherichia coli bioassay, Appl. Environ. Microbiol. 46:1080–1083.

    PubMed  CAS  Google Scholar 

  • Raymond, K. N., Mueller, G., and Matzanke, B. F., 1984, Complexation of iron by siderophores. A review of their solution and structural chemistry and biological function, Top. Curr. Chem. 123:49–102.

    Article  CAS  Google Scholar 

  • Reid, R. K., Reid, C. P. P., and Szaniszlo, P. J., 1985, Effects of synthetic and microbially producted chelates on the diffusion of iron and phosphorus to a simulated root in soil, Biol. Fertil. Soils 1:42–45.

    Article  Google Scholar 

  • Römheld, V., and Marschner, H., 1983, Mechanism of iron uptake by peanut plants, 1. Fe reduction, chelate splitting and release of phenolics. Plant Physiol. 71:949–954.

    Article  PubMed  Google Scholar 

  • Römheld, V., and Marschner, H., 1986, Evidence for a specific uptake system for iron phy- tosiderophores in roots of grasses. Plant Physiol. 80:175–180.

    Article  PubMed  Google Scholar 

  • Römheld, V., Marschner, H., and Kramer, D., 1982, Responses of Fe-deficiency in roots of "Fe-efiicient" plant species, J. Plant Nutr. 5: 489–499.

    Article  Google Scholar 

  • Scher, F. M., and Baker, R., 1982, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness toFusarium wilt pathogens, Phytopathology 72:1567–1573.

    Article  CAS  Google Scholar 

  • Schippers, B., Bakker, P. A. H. M., Bakker, A. W., Weisbeek, P. J., and Lutgenberg, B., 1986, Plant growth inhibiting and stimulating rhizosphere microorganisms, in: Microbial Communities in Soil (V. Jensen, A. Kjoller, and L. H. Sorensen, eds.), pp. 35–49, Elsevier, London.

    Google Scholar 

  • Slade, S. J., and Swinburne, T. R., 1985a, Infection development of Colletotrichum linde- muthianum race ß on resistant and susceptible cultivars of Phaseolus vulgaris affected by a bacterial siderophore. Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Slade, S. J., and Swinburne, T. R., 1985b, Phytoalexin accumulation elicited abiotically in Vicia faba reduced by a bacterial siderophore. Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Stiefel, E. L, Burgess, B. K., Wherland, S., Newton, W. E., Corbin, J. L., and Watt, G. D., 1980, Azotobacter vinelandii biochemistry: H2(D2)N2 relationships of nitrogenase and some aspects of iron metabolism in: Nitrogen Fixation, Vol. 1 (W. E. Newton and W. H. OrmeJohnson, eds.), pp. 221–222, University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Stone, K. J., and Stominger, J. L., 1972, Inhibition of sterol biosynthesis by bacitracin, Proc. Natl Acad Sei. USA 69:1287.

    Article  CAS  Google Scholar 

  • Stutz, E., 1964, Aufnahme von ferrioxamine B durch Tomatenplanzen, Experimentia 20:430–431.

    Article  CAS  Google Scholar 

  • Sugiura, Y., and Nomoto, K., 1984, Phytosiderophores: Structures and properties of mugi- neic acids and their metal complexes. Structure Bonding 58:107–135.

    Article  CAS  Google Scholar 

  • Suslow, T. v., and Schroth, M. N., 1982, Role of deleterious rhizobacteria as minor pathogens in reducing crop growth, Phytopathology 72:111–115.

    Article  Google Scholar 

  • Szabo, I., Benedek, A., and Barabas, G., 1985, Possible role of streptomycin released from spore cell wall of Streptomyces griseus, Appl Environ. Microbiol. 50:438–440.

    PubMed  CAS  Google Scholar 

  • Szaniszlo, P. J., Powell, P. E., Reid, C. P. P., and Cline, G. R., 1981, Production of hydrox- amate siderophore iron chelators by ectomycorrhizal fungi, Mycologia 73:1158–1175.

    Article  CAS  Google Scholar 

  • Szaniszlo, P. J., Tai, S. C., Crowley, D. E., and Reid, C. P. P., 1985, Mechanisms of iron acquisition from hydroxamate siderophores by two monocot plant species. Advanced Nato Research Workshop, London (July 1985), Abstract.

    Google Scholar 

  • Teintze, M., and Leong., J., 1981, Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas BIO, Biochemistry 20:6457–6462.

    Article  PubMed  CAS  Google Scholar 

  • Teintze, M., Hossain, M. D., Barnes, C. L., Leong, J., and Van den Helm, D., 1981, Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas, Biochemistry 20:6446–6457.

    Article  PubMed  CAS  Google Scholar 

  • Torres, L., Perez-Ortin, J. E., Tordera, V., and Beltran, J. P., 1986, Isolation and characterization of an Fe(III)-chelating compound produced by Pseudomonas syringae, Appl. Environ. Microbiol. 52:157–160.

    PubMed  CAS  Google Scholar 

  • Trick, C. G., Andersen, R. J., Gillam, A., and Harrison, P. J., 1983, Prorocentrin: an extracellular siderophore produced by the marine dinoflagellate.Science 219:306–308.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh, P. A., Gonzalez, C. F., Wright, A. M., and Kunka, B. S., 1983, Iron-chelating compounds produced by soil pseudomonads: Correlation with fungal growth inhibition, Appl. Environ. Microbiol. 46:128–132.

    PubMed  CAS  Google Scholar 

  • Warren, R. A. J., and Neilands, J. B., 1965, Mechanism of microbial catabolism of ferri- chrome A, J. Biol. Chem. 240:2055–2058.

    PubMed  CAS  Google Scholar 

  • Wehrii, W., and Staehelin, M., 1971, Actions of the rifamycin, Bacteriol. Rev. 35:290–309.

    Google Scholar 

  • Wendenbaum, S., Demange, P., Dell, A., Meyer, J. M., and Abdallah, M. A., 1983, The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa, Tetrahedron Lett. 24:4877–4880.

    Article  CAS  Google Scholar 

  • Winkelmann, G., 1979, Surface iron polymers and hydroxy acids. A model of iron supply in sideramine-free fungi, Arch. Mikrobiol 121:43–51.

    CAS  Google Scholar 

  • Winkelmann, G., 1985, Specificity of siderophore iron uptake by fungi, in:The Biological Chemistry of Iron (H. B. Dunford, D. Dolphin, K. N. Raymond, and L. Sieker, eds.), pp. 107–116, D. Reidel, Dordrecht.

    Google Scholar 

  • Yang, C. C., and Leong, J., 1984, Structure of Pseudobactin 7SR1, a siderophore from a plant deleterious Pseudomonas, Biochemistry 23:3534–3540.

    Article  PubMed  CAS  Google Scholar 

  • Zähner, H., Keller-Schierlein, W., Hutter, R., Hess-Leisinger, K., and Deer, A., 1963, Stoff- wechselprodukte van Mikroorganismen: 40. Mitteilung. Sideramine aus Äspergillaceen, Arch. Mikrobiol 45:119–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bossier, P., Hofte, M., Verstraete, W. (1988). Ecological Significance of Siderophores in Soil. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics