Skip to main content

Use of “Specific” Inhibitors in Biogeochemistry and Microbial Ecology

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

The above statement, although meant to be tongue in cheek, contains an essential truism: all work with inhibitors is inherently suspect. This fact has been known by biochemists for some time. However, use of chemical inhibitors of enzymic systems and membranes continues to be a common approach taken toward unraveling the biochemistry and biophysics of plants, animals, and microorganisms. Various types of “broad-spectrum” biochemical inhibitors (e.g., poisons, respiratory inhibitors, and uncouplers) have been employed by ecologists for many years in order to demonstrate the active participation of microbes in chemical reactions occurring in natural samples (e.g., soils, sediments, and water). In recent years, considerable advances have been made in our understanding of the biochemistry of microorganisms of biogeochemical interest. Concurrent with these advances have been the discoveries of novel types of compounds that will block the metabolism of one particular group of microbes, but have little disruptive effect on other physiological types. Thus, the term “specific inhibitor” has been applied to these types of compounds when they are used to probe the functions of mixed populations of microorganisms. These substances provide powerful experimental tools for investigating the activity and function of certain types of microorganisms in natural samples.

Inhibitors are like old sports cars: They are fun to play around with, but you should never trust them!

—Anonymous microbiologist

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abram, J. W., and Nedwell, D. B., 1978a, Inhibition of methanogenesis by sulfate-reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Abram, J. W., and Nedwell, D. B., 1978b, Hydrogen as a substrate for methanogenesis and sulfate reduction in anaerobic saltmarsh sediment. Arch. Microbiol. 117:93–97.

    Article  PubMed  CAS  Google Scholar 

  • Aller, R. C., and Vingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.

    Article  CAS  Google Scholar 

  • Alperin, M. J., and Reeburgh, W. S., 1985, Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol. 50:940–945.

    PubMed  CAS  Google Scholar 

  • Anderson, J. H., 1965, Studies on the oxidation of ammonia by Nitrosomonas, Biochem. J. 95:7926–7929.

    Google Scholar 

  • Anthony, C., 1982,The Biochemistry of Methylotrophs, Academic Press, New York.

    Google Scholar 

  • Arcuri, E. J., and Ehrlich, H. L., 1979, Cytochrome involvement in Mn (II) oxidation by two marine bacteria, AppL Environ. Microbiol 37:916–923.

    PubMed  CAS  Google Scholar 

  • Arp, D. J., and Zumft, W. G., 1983, Methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodo- pseudomonas palustris, Arch. Microbiol. 134:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.

    Article  Google Scholar 

  • Babiker, H. M., and Pepper, I. L., 1984, Microbial production of ethylene in desert soils. Soil Biol. Biochem. 16:559–564.

    Article  CAS  Google Scholar 

  • Badour, S. S., 1978, Inhibitors used in studies of algal metabolism, in: Handbook ofPhy- cological Methods. Physiological and Biochemical Methods (J. Hellebust and J. Craigie, eds.), pp. 479–488, Cambridge University Press, London.

    Google Scholar 

  • Balba, M. T., and Nedwell, D. B., 1982, Microbial metabolism of acetate, propionate and butyrate in anoxic sediment from the Colne Point saltmarsh, Essex, U.K., J. Gen. Microbiol. 128:1415–1422.

    CAS  Google Scholar 

  • Balch, W. E., and Wolfe, R. S., 1979a, Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid), J. Bacteriol. 137:256–263.

    PubMed  CAS  Google Scholar 

  • Balch, W. E., and Wolfe, R. S., 1979b, Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium, J. Bacteriol. 137:264–273.

    PubMed  CAS  Google Scholar 

  • Balch, W. M., 1987, Studies of nitrate transport of marine phytoplankton using 14Cl-ClOj as a transport analog: I. Physiological findings, J. Phycol. 23:107–118.

    CAS  Google Scholar 

  • Balderston, W. L., and Payne, W. J., 1976, Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides, Appl. Environ. Microbiol. 32:264–269.

    PubMed  CAS  Google Scholar 

  • Balderston, W. L., Sherr, B., and Payne, W. J., 1976, Blockage by acetylene of nitrous oxide reduction inPseudomonas perfectomarinus, Appl. Environ. Microbiol. 31:504–508.

    PubMed  CAS  Google Scholar 

  • Banat, I. M., and Nedwell, D. B., 1983, Mechanisms of turnover of C2-C4 fatty acids in high-sulfate and low-sulfate anaerobic sediments,FEMS Microbiol. Lett. 17:107–110.

    Article  CAS  Google Scholar 

  • Banat, I. M., and Nedwell, D. B., 1984, Inhibition of sulfate reduction in anoxic marine sediments by Group VI anions, Est. Coast. Shelf Sei. 18:361–366.

    Article  CAS  Google Scholar 

  • Banat, I. M., Lindstrom, E. B., Nedwell, D. B., and Balba, M. T., 1981, Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in saltmarsh sediment, Appl. Environ. Microbiol. 42:985–992.

    PubMed  CAS  Google Scholar 

  • Banat, I. M., Nedwell, D. B., and Balba, M. T., 1983, Stimulation of methanogenesis by slurries of saltmarsh sediment after the addition of molybdate to inhibit sulfate-reduc- ing bacteria, J. Gen. Microbiol. 129:123–129.

    CAS  Google Scholar 

  • Barker, H. A., 1956.Bacterial Fermentations, Wiley, New York.

    Google Scholar 

  • Barnes, R. O., and Goldberg, E. D., 1976, Methane production and consumption in anoxic marine sediments. Geology 4:297–300.

    Article  CAS  Google Scholar 

  • Batterson, J., Winters, K., and Van Baalen, C., 1978, Anilines: Selective toxicity to blue- green algae. Science 199:1068–1070.

    Article  Google Scholar 

  • Bauchop, T., 1967, Inhibition of rumen methanogenesis by methane analogues, J. Bacteriol. 94:171–175.

    PubMed  CAS  Google Scholar 

  • Belay, N., Sparling, R., and Daniels, L., 1984, Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288.

    Article  PubMed  CAS  Google Scholar 

  • Belser, L. W., and Mays, E. L., 1980, Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments, AppL Environ. Microbiol. 39:505–510.

    PubMed  CAS  Google Scholar 

  • Belser, L. W., and Schmidt, E. L., 1981, Inhibitory effect of nitrapyrin on three genera of ammonia-oxidizing nitrifiers, J. Environ. Microbiol. 41:819–821.

    CAS  Google Scholar 

  • Benner, R., Moran, M. A., and Hodson, R. E., 1986, Biogeochemical cycling of ligno-cel- lulose carbon in marine and freshwater ecosystems: Relative contribution of procary- otes and encaryotes. Limnol Oceanogr. 31:89–100.

    Article  Google Scholar 

  • Bennett, E. O., and Bauerle, R. H., 1960, The sensitivities of mixed populations of bacteria to inhibitors, Aust. J. Biol Sei. 13:142–149.

    CAS  Google Scholar 

  • Berg, P., Klemedtsson, L., and Rosswall, T., 1982, Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol. Biochem. 14:301–303.

    Article  CAS  Google Scholar 

  • Billen, G., 1976, Evaluation of nitrifying activity in sediments by dark C-14 bicarbonate incorporation. Water Res. 10:51–57.

    Article  CAS  Google Scholar 

  • Blackmer, A. M., Bremner, J. M., and Schmidt, E. L., 1980, Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil, AppL Environ. Microbiol. 40:1060–1066.

    PubMed  CAS  Google Scholar 

  • Bomar, M., Knoll, K., and Widdel, F., 1985, Fixation of molecular nitrogen byMethano- sarcina barkeri, FEMS Microb. Ecol. 31:47–55.

    Article  CAS  Google Scholar 

  • Bothe, H., 1982, Hydrogen production by algae, Experientia 38:59–66.

    Article  CAS  Google Scholar 

  • Bothe, H., Tennigket, J. and Eisbrenner, G., 1977a, The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch. Microbiol. 114:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Bothe, H., Tennigket, J., and Eisbrenner, G., 1977b, The hydrogenase-nitrogenase relationship in the blue-green alga Anabaena cylindrica, Planta 33:237–242.

    Article  Google Scholar 

  • Boussiba, S., and Gibson, J., 1985, The role of glutamine synthetase activity in ammonium and methylammonium transport in Anacystis nidulans R-2, FEBS Lett. 180:13–16.

    Article  CAS  Google Scholar 

  • Bouwer, E. J., and McCarthy, P. L., 1983a, Transformation of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions, Appl. Environ. Microbiol. 45:1295–1299.

    PubMed  CAS  Google Scholar 

  • Bouwer, E. J., and McCarthy, P. L., 1983b, Effects of 2-bromethanesulfonic acid and 2- chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column,Appl. Environ. Microbiol. 45:1408–1410.

    PubMed  CAS  Google Scholar 

  • Bremner J. M., and Blackmer, A. M., 1978, Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296.

    Article  PubMed  CAS  Google Scholar 

  • Bremner, J. M., and Blackmer, A. M., 1979, Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature 280:380–381.

    Article  CAS  Google Scholar 

  • Bremner, J. M., and Blackmer, A. M., 1981, Terrestrial nitrification as a source of atmospheric nitrous oxide, in: Denitrification, Nitrification, and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), pp. 151–170, Wiley, New York.

    Google Scholar 

  • Brenchley, J. E., 1973, Effect of methionine sulfoximine and methionine on glutamate synthesis in Klebsiella aerogenes, J. Bacteriol. 114:666–673.

    PubMed  CAS  Google Scholar 

  • Brierley, C. L., and Brierley, J. A., 1982, Anaerobic reduction of molybdenum by Sulfolobus species, Zentralbl. Bakteriol. Hyg. I Abt. Orig. 3:289–294.

    CAS  Google Scholar 

  • Brock, T. D., 1961, Chloramphenicol, Bacteriol. Rev. 25:32–48.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1978, The poisoned control in biogeochemical investigations, in: Environmental Biogeochemistry and Geomicrobiology, Vol. 3 (W. Krumbein, ed.), pp. 717–725, Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Brodbeck, U., 1980, Enzyme Inhibitors, Verlag Chemie, Weinheim.

    Google Scholar 

  • Brouzes, R., and Knowles, R., 1971, Inhibition of growth of Clostridium pasteurianum by acetylene: Implications for nitrogen fixation assay, Can. J. Microbiol. 17:1483–1489.

    Article  PubMed  CAS  Google Scholar 

  • Burdige, D. J., and Kepkay, P. E., 1983, Determination of bacterial manganese oxidation rates in sediments using an in situ dialysis technique. I. Laboratory studies, Geochim. Cosmochim. Acta 47:1907–1916.

    Article  CAS  Google Scholar 

  • Burdige, D. J., and Nealson, K. H., 1985, Microbial manganese reduction by enrichment cultures from coastal marine sediments, Appl. Environ. Microbiol. 50:491–497.

    PubMed  CAS  Google Scholar 

  • Burris, R. H., 1974, Methodology, in: The Biology of N 2 Fixation (A. Quispel, ed.), pp. 9–33, North-Holland, Amsterdam.

    Google Scholar 

  • Campbell, A. M., del Campillo-Campbell, A., and Villaret, D. B., 1985, Molybdate reduction by Escherichia coli K-12 and its chl mutants, Proc. Nati Acad. Sei. USA 82:227–231.

    Article  CAS  Google Scholar 

  • Campbell, L., and Carpenter, E. J., 1986, Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the sea water dilution and selective inhibitor techniques, Mar. Ecol. Prog. Ser. 33:121–129.

    Article  Google Scholar 

  • Campbell, N. E. R., and Aleem, M. I. H., 1965a, The effect of 2-chloro-6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. I. Ammonia and hydroxylamine oxidation by Nitrosomonas, Antonie Leeuwenhoek. J. Microbiol. Serol. 31:124–136.

    CAS  Google Scholar 

  • Campbell, N. E. R., and Aleem, M. I. H., 1965b, The effect of 2-chloro-6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. II. Nitrite oxidation by Nitrobacter, Antonie Leeuwenhoek J. Microbiol. Serol. 31:137–144.

    CAS  Google Scholar 

  • Capone, D. G., 1982, Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass, Zostera marina. L., Mar. Ecol. Prog. Ser. 10:67–75.

    Article  Google Scholar 

  • Capone, D. G., 1983, Benthic nitrogen fixation, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 105–137, Academic Press, New York.

    Google Scholar 

  • Capone, D. G., 1984, Factors controlling nitrogen fixation in marine sediments, in: Abstracts, 47th Annual Meeting of American Society of Limnol. Oceanogr., p. 14.

    Google Scholar 

  • Capone, D. G., 1987, Benthic nitrogen fixation; Microbiology, physiology and ecology, in: Nitrogen Cycling in Marine, Coastal Environments (T. H. Blackburn, J. Sorenson, and T. Roswall, eds.), Wiley, New York, in press.

    Google Scholar 

  • Capone, D. G., and Carpenter, E. J., 1982a, A perfusion method for assaying microbial activities in estuarine sediments: Applicability to studies of N2 fixation by C2H2 reduction, Appl. Environ. Microbiol. 43:1400–1405.

    PubMed  CAS  Google Scholar 

  • Capone, D. G., and Carpenter, E. J., 1982b, Nitrogen fixation in the marine environment. Science 217:1140–1142.

    Article  PubMed  CAS  Google Scholar 

  • Capone, D. G., and Kiene, R. P., 1987, Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, in: The Comparative Ecology of Freshwater and Marine Ecosystems (S. Nixon, ed.),Limnol. Oceanogr. (Special Volume), in press.

    Google Scholar 

  • Capone, D. G., Oremland, R. S., and Taylor, B. F., 1977, Significance of N2 fixation to the production of Thalassia testudinum communities, in:Proceedings of the CICAR [Cooperative Investigations of the Caribbean and Adjacent Regions] II Symp. Prog. Mar. Res. Caribbean & Adjacent Regions (L. B. Stewart, Jr., ed.), pp. 71–85, FAO Fisheries Report 200, Rome, Italy.

    Google Scholar 

  • Capone, D. G., Reese, D. D., and Kiene, R. P., 1983, Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments, Appl. Environ. Microbiol. 45:1586–1591.

    PubMed  CAS  Google Scholar 

  • Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments, Antonie Leeuwenhoek J. Microbiol. Serol 40:297–306.

    CAS  Google Scholar 

  • Carpenter, E. J., 1983a, Nitrogen fixation by marineOscillatoria (Trichodesmium) in the world’s oceans, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 65–104, Academic Press, New York.

    Google Scholar 

  • Carpenter, E. J., 1983b, Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium), Mar. Biol. Lett. 4:69–85.

    CAS  Google Scholar 

  • Chan, Y., and Knowles, R., 1979, Measurements of denitrification in two freshwater sediments by an in situ acetylene inhibition method, Appl. Environ. Microbiol. 37:1067–1072.

    PubMed  CAS  Google Scholar 

  • Chan, Y. K., Nelson, L. M., and Knowles, R., 1980, Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can. J. Microbiol. 26:1126–1131.

    Article  PubMed  CAS  Google Scholar 

  • Chapnick, S. D., Moore, W. S., and Nealson, K. H., 1982, Microbially mediated manganese oxidation in a freshwater lake, Limnol Oceanogr. 27:1004–1014.

    Article  CAS  Google Scholar 

  • Chemerys, R. A., 1983, Nitrogen fixation and hydrogen cycling in salt marsh sediment, M. S. Thesis, State University of New York at Stony Brook.

    Google Scholar 

  • Chen, M., and Wolin, M. J., 1979, Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria, Appl. Environ. Microbiol 38:72–77.

    PubMed  CAS  Google Scholar 

  • Ching, W. M., Wittwer, A. J., Tsai, L., and Stadtman, T. C., 1984, Distribution of two sele- nonucleosides among the selenium-containing t RNAs from Methanococcus vanielii, Proc. Natl Acad. Sei. USA 81:57–60.

    Article  CAS  Google Scholar 

  • Christensen, D., 1984, Determination of substrates oxidized by sulfate-reduction in intact cores of marine sediments, Limnol Oceanogr. 29:189–192.

    Article  CAS  Google Scholar 

  • Cloem, J. E., Cole, B. E., and Oremland, R. S., 1983, Autotrophic processes in Big Soda Lake, Nevada, Limnol Oceanogr. 28:1049–1061.

    Article  Google Scholar 

  • Compeau, G. C., and Bartha, R., 1985, Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment, Appl Environ. Microbiol 50:498–502.

    PubMed  CAS  Google Scholar 

  • Compeau, G. C., and Bartha, R., 1987, Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments, Appl Environ. Microbiol 53:261–265.

    PubMed  CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1980, Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil, Appl Environ. Microbiol 40:437–445.

    PubMed  CAS  Google Scholar 

  • Comforth, I. S., 1975, The persistence of ethylene in aerobic soils. Plant Soil 42:85–96.

    Article  Google Scholar 

  • Coty, V. F., 1967, Atmospheric nitrogen fixation by hydrocarbon-utilizing bacteria,Biotech. Bioeng 9:25–32.

    Article  CAS  Google Scholar 

  • Cox, R. B., and Zatman, L. J., 1976, The effect of fluoroacetate on the growth of the facultative methylotrophs bacterium 5H2 and Pseudomonas AMI and bacterium 5B2,J. Gen. Microbiol 93:397–400.

    PubMed  CAS  Google Scholar 

  • Cresswell, R. C., and Syrett, P. J., 1984, Effects of methylammonium and of l-methionine- dl-sulfoximine on the growth and nitrogen metabolism of Phaeodactylum tricornutum. Arch. Microbiol 139:67–71.

    Article  CAS  Google Scholar 

  • Culbertson, C. W., 1983, Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. M. S. Thesis, San Francisco State University.

    Google Scholar 

  • Culbertson, C. W., and Oremland, R. S., 1983, Anaerobic growth of the enrichment culture on acetylene gas, in: Abstracts Third International Symposium on Microbial Ecology, p. A4.

    Google Scholar 

  • Culbertson, C. W., Zehnder, A. J. B., and Oremland, R. S., 1981, Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures, Appl Environ. Microbiol 41:396–403.

    PubMed  CAS  Google Scholar 

  • Daday, A., Platz, R. A., and Smith, G. D., 1977, Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica, Appl Environ. Microbiol 34:478–483.

    CAS  Google Scholar 

  • Dalton, H., 1977, Ammonia oxidation by the methane oxidizing bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol 114:273–279.

    Article  CAS  Google Scholar 

  • Dalton, H., and Whittenbury, R., 1976, The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain Bath,Arch. Microbiol 109:147–151.

    Article  CAS  Google Scholar 

  • Davis, J. B., and Yarbrough, H. F., 1966, Anaerobic oxidation of hydrocarbons by Desul- fovibrio desulfuricans, Chem. Geol 1:137–144.

    Article  Google Scholar 

  • Dawson, R. M. C, Elliott, D. C., Elliott, W. H., and Jones, K. M. (eds.) 1969, Data for Biochemical Research, 2nd ed., Oxford University Press, New York.

    Google Scholar 

  • De Bont, J. A. M., 1976a, Oxidation of ethylene by soil bacteria, Antonie Leeuwenhoek J. Microbiol Serol 42:59–71.

    Google Scholar 

  • De Bont, J. A. M., 1976b, Bacterial degradation of ethylene and the acetylene reduction test, Can. J. Microbiol 22:1060–1062.

    Article  Google Scholar 

  • De Bont, J. A. M., and Albers, A. J. M., 1976, Microbial metabolism of ethylene, Antonie Leeuwenhoek J. Microbiol. Serol. 42:73–80.

    Google Scholar 

  • De Bont, J. A. M., and Harder, W., 1978, Metabolism of ethylene byMycobacterium E 20, FEMS Microbiol Lett. 3:89–93.

    Article  Google Scholar 

  • De Bont, J. A. M., and Mulder, E. G., 1974, Nitrogen fixation and cooxidation of ethylene by a methane-utilizing bacterium, J. Gen. Microbiol. 83:113–121.

    Google Scholar 

  • De Bont, J A. M., and Mulder, E. G., 1976, Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria, Appl. Environ. Microbiol 31:640–647.

    PubMed  Google Scholar 

  • De Bont, J. A. M., and Peck, M. W., 1980, Metabolism of acetylene by Rhodococcus Al, Arch. Microbiol 127:99–104.

    Article  Google Scholar 

  • Dellinger, C. A., and Ferry, J. G., 1984, Effect of monensin on growth and methanogenesis ofMethanobacterium formicicum, Appl Environ. Microbiol 48:680–682.

    PubMed  CAS  Google Scholar 

  • Delwiche, C. C., 1981, The nitrogen cycle and nitrous oxide, in: Denitrification, Nitrification and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), pp. 1–15, Wiley, New York.

    Google Scholar 

  • Devol, A. H., 1983, Methane oxidation rates in the anaerobic sediments of Saanich Inlet, Limnol Oceanogr. 28:738–742.

    Article  CAS  Google Scholar 

  • Devol, A. H., Anderson, J. J., Kuivila, K., and Murray, J. W., 1984, A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet, Geochim. Cosmochim. Acta 48:993–1004.

    Article  CAS  Google Scholar 

  • Dicker, H. J., and Smith, D. W., 1980, Physiological ecology of acetylene reduction (nitrogen fixation) in a Delaware salt marsh, Microb. Ecol 6:161–171.

    Article  CAS  Google Scholar 

  • Dicker, H. J., and Smith D. W., 1985a, Effects of organic amendments on sulfate reduction activity, H2 consumption, and H2 production in salt marsh sediments, Microb. Ecol 11:299–315.

    Article  CAS  Google Scholar 

  • Dicker, H. J., and Smith, D. W., 1985b, Metabolism of low molecular weight organic compounds by sulfate-reducing bacteria in a Delaware saltmarsh, Microb. Ecol 11:317–335.

    Article  CAS  Google Scholar 

  • Dilworth, M. J., 1966, Acetylene-reduction by nitrogen-fixing preparations from Clostridium pasteurianum, Biochem. Biophys. Acta 127:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Dodds, K. L., and Collins-Thompson, D. L., 1985, Production of N2O and CO2 during the reduction of NO2 - by Lactobacillus lactis TS4, Appl Environ. Microbiol 50:1550- 1552.

    PubMed  CAS  Google Scholar 

  • Duguay, L. E., and Taylor, D. L., 1978, Primary production and calcification by the soritid fordimimfQx Archais angulatus (Fichtel & Moll), J. Protozool 25:356.

    CAS  Google Scholar 

  • Duran, A., Cabib, E., and Bowers, B., 1979, Chitin synthetase distribution on the yeast plasma membrane. Science 203:363–365.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H. L., 1966, Reactions of manganese by bacteria from marine ferromanganese nodules, Dev. Ind. Microbiol 13:57–65.

    Google Scholar 

  • Ehrlich, H. L., 1968, Bacteriology of manganese nodules. IL Manganese oxidation by cell- free extracts from a manganese nodule bacterium, Appl Microbiol 16:196–202.

    Google Scholar 

  • Ehrlich, H. L., 1978, Inorganic energy sources for chemolithotrophs and mixotrophic bacteria, Geomicrobiol J. 1:65–83.

    Article  CAS  Google Scholar 

  • Ehriich, H. L., 1981,Geomicrobiology, Dekker, New York.

    Google Scholar 

  • Eisbrenner, G., and Bothe, H., 1979, Modes of electron transfer for molecular hydrogen in Anabaena cylindrica, Arch. Microbiol 123:37–45.

    Article  CAS  Google Scholar 

  • Elleway, R. F., Sabine, J. R., and Nicholas, D. J. D., 1971, Acetylene reduction by rumen microflora. Arch. Microbiol 76:277–291.

    CAS  Google Scholar 

  • Elrifi, I., and Turpin, D. F., 1986, Nitrate and ammonium induced photosynthetic supres- sion in N-limited Selenastrum minutum, Plant Physio. 81:273–279.

    Article  CAS  Google Scholar 

  • Emerson, S., Kalhorn, S., Jacobs, L., Tebo, B. M., Nealson, K. H., and Rosson, R. A., 1982, Environmental oxidation rate of manganese (II): Bacterial catalysis, Geochim. Cosmochim. Acta 46:1073–1079.

    Article  CAS  Google Scholar 

  • Enoch, H. G., and Lester, R. L., 1972, Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzymes in Escherichia coli, J. Bacteriol 110:1032–1040.

    CAS  Google Scholar 

  • Ereckinska, M., and Wilson, D. F. (eds.), 1984, Inhibition of Mitochondrial Function, Pergamon Press, New York.

    Google Scholar 

  • Evans, H. J., and Barber, L. E., 1977, Biological nitrogen fixation for food and fiber production, Science 197:332–339.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D. G., Beauchamp, E., and Trevors, J. T., 1985, Sulfide alleviation of the acetylene inhibition of nitrous oxide reduction in soil,Appl Environ. Microbiol 49:217–220.

    PubMed  CAS  Google Scholar 

  • Falkowski, P., 1983, Enzymology of nitrogen assimilation, in Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone), pp. 809–838, Academic Press, New York.

    Google Scholar 

  • Fedorova, R. I., Milekhina, E. I., and L’yukhina, I., 1973, Evaluation of the method of "gas metabolism" for detecting extraterrestrial life. Identification of nitrogen-fixing microorganisms,Izv. Akad. Nauk SSSR Ser. Biol 6:797–806.

    CAS  Google Scholar 

  • Fenchel, T. M., and Riedl, R. J., 1970, The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol 7:255–268.

    Article  CAS  Google Scholar 

  • Ferenci, T., 1974, Carbon monoxide-stimulated respiration in methane-utilizing bacteria, FEBS Lett. 11:94–97.

    Article  Google Scholar 

  • Fischer, C. R., Childress, J. J, Oremland, R. S., and Bidigare, R. R., 1987, The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep sea mussels. Marine Biol 96:59–72.

    Article  Google Scholar 

  • Flores, E., Guerro, M. G., and Losada, M., 1980, Short-term ammonium inhibition of nitrate utilization by Anacystis nidulans and other cyanobacteria, Arch. Microbiol 128:137–144.

    Article  CAS  Google Scholar 

  • Franklin, T. J., and Snow, G. A., 1981, Biochemistry of Antimicrobial Action, 3rd ed.. Chapman and Hall, New York.

    Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl Environ. Micobiol 39:1085–1095.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation of field results. Mar. Biol 66:109–120.

    Article  Google Scholar 

  • Fuhrman, J. A., and McManus, G. B., 1984, Do bacteria-sized marine eukaryotes consume significant bacterial production?, Science 224:1257–1259.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., Ducklow, H. W., Kirchman, D. L., Hudak, J., McManus, G. B., and Kramer, J., 1986, Does adenine incorporation into nucleic acids measure total microbial production? Limnol Oceanogr. 31:627–636.

    Article  CAS  Google Scholar 

  • Furusaka, C., 1961, Sulfate transport and metabolism by Desulfovibrio desulfuricans, Nature 192:427–429.

    CAS  Google Scholar 

  • Gadd, G. M., and Griffiths, A. J., 1978, Microorganisms and heavy metal toxicity, Microb. Ecol 4:303–317.

    Article  CAS  Google Scholar 

  • Ghiorse, W. C., and Ehrlich, H. L., 1976, Electron transport components of the MnO2 reductase system and the location of terminal reductase in a marine Bacillus, Appl Environ. Microbiol 31:977–985.

    PubMed  CAS  Google Scholar 

  • Glover, H. E., 1982, Methylamine, an inhibitor of ammonium oxidation and chemoauto- trophic growth in the marine, nitrifying bacterium Nitrosococcus oceanus, Arch. Microbiol 132:37–40.

    Article  CAS  Google Scholar 

  • Glover, H. E., and Morris, I., 1979, Photosynthetic carboxylating enzymes in marine phy- toplankton, Limnol Oceanogr. 24:510–519.

    Article  CAS  Google Scholar 

  • Goodman, B. A., and Cheshire, M. V., 1982, Reduction of molybdate by soil organic matter: EPR evidence for formation of both Mo(V) and Mo(III), Nature 299:618–620.

    Article  CAS  Google Scholar 

  • Gordon, J. K., and Brill, W. J., 1974, Derepression of nitrogenase synthesis in the presence of excess NH4+, Biochem. Biophys. Res. Commun. 59:967–971.

    Article  PubMed  CAS  Google Scholar 

  • Goring, C. A., 1962, Control of nitrification by 2-chloro-6 (trichloromethyl) pyridine. Soil, Sd. 93:211–218.

    Article  CAS  Google Scholar 

  • Gottleib, D., and Shaw, P. D., (eds.), 1967, Antibiotics, Vol. 1: Mechanism of Action, Springer-Verlag, New York.

    Google Scholar 

  • Graham, B. M., Hamilton, R. D., and Campbell, N. E. R., 1980, Comparison of the nitro- gen-15 uptake and acetylene reduction methods for estimating the rates of nitrogen fixation by freshwater blue-green algae, Can. J. Fish. Aquat. Sei. 37:488–493.

    Article  CAS  Google Scholar 

  • Grbic-Galic, D., and Young, L. Y., 1985, Methane fermentation of ferulate and benzoate: Anaerobic degradation pathways, Appl. Environ. Microbiol. 50:292–297.

    PubMed  CAS  Google Scholar 

  • Green, J., Prior, S. D., and Dalton, H., 1985, Copper ions as inhibitors of protein C of soluble methane monooxygenase ofMethylococcus capsulatus (Bath), Eur. J. Biochem. 153:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., and Wolfe, R. S., 1978, ATP activation and properties of the methyl coen-zyme M reductase system in Methanobacterium thermoautotrophicum, J. Bacteriol. 135:851–857.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., and Wolfe, R. S., 1980, Methyl coenzyme M reductase from Methanobac-f terium thermoautotrophicum. Resolution and properties of the components, J. Biol. Chem. 255:1891–1895.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., Roemesser, J. A., and Wolfe, R. S., 1978, Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.

    Article  PubMed  CAS  Google Scholar 

  • Habets-Crutzen, A. Q. H., and de Bont, J. A. M., 1985, Inactivation of alkene oxidation by epoxides in alkene- and alkane-grown bacteria,Appl. Microbiol. Biotechnol. 22:428–433.

    Article  Google Scholar 

  • Habte, M., and Alexander, M., 1980, Nitrogen fixation by photosynthetic bacteria in low-land rice culture, Appl. Environ. Microbiol. 39:342–347.

    PubMed  CAS  Google Scholar 

  • Hahn, F. E. (ed.), 1983, Antibiotics, Vol. 6: Modes and Mechanisms of Microbial Growth Inhibitors, Springer-Verlag, Berlin.

    Google Scholar 

  • Hall, G. H., 1982, Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake, Appl. Environ. Microbiol 43:542–547.

    PubMed  CAS  Google Scholar 

  • Hall, G. H., 1984, Measurement of nitrification rates in lake sediments: Comparison of the nitrification inhibitors nitrapyrin and allythiourea, Microb. Ecol 10:25–36.

    Article  CAS  Google Scholar 

  • Hardy, R. W. F., and Havelka, U. D., 1975, Nitrogen fixation research: A key to world food?. Science. 188:633–642.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, R. W. F., Holsten, R. D., Jackson, E. K., and Bums, R. C., 1968, The acetylene- ethylene assay for N2 fixation: Laboratory and field evaluation, Plant Physiol 43:1185–1207.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, W. G., 1983, Use of isotopes, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 763–808, Academic Press, New York.

    Google Scholar 

  • Harrits, S. M., and Hanson, R. S., 1980, Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin, Limnol Oceanogr. 25:412–421.

    Article  CAS  Google Scholar 

  • Healy, J. B., Young, L. Y., and Reinhard, M., 1980, Methanogenic decomposition of ferulic acid, a model lignin derivative, App. Environ. Microbiol 39:436–444.

    CAS  Google Scholar 

  • Henninger, N. M., and Bollag, J. M., 1976, Effect of chemicals used as nitrification inhibitors on the denitrification process.Can. J. Microbiol 22:688.

    Article  Google Scholar 

  • Hendrickson, L. I., and Keeney, D. R., 1979a, Effect of some physical and chemical factors on the rate of hydrolysis of nitrapyrin (N-serve), Soil Biol Biochem. 11:47–50.

    Article  CAS  Google Scholar 

  • Hendrickson, L. I., and Keeney, D. R., 1979b, A bioassay to determine the effect of organic matter and pH on the effectiveness of nitrapyrin (N-serve) as a nitrification inhibitor, Soil Biol Biochem. 11:51–55.

    Article  CAS  Google Scholar 

  • Henriksen, K., 1980, Measurement of in situ rates of nitrification in sediment, Microb. Ecol 6:329–337.

    Article  CAS  Google Scholar 

  • Higgins, I. J., and Quayle, J. R., 1970, Oxygenation of methane by methane grown Pseudomonas methanica and Methylomonas methano-oxidans, Biochem. J. 118:201–208.

    PubMed  CAS  Google Scholar 

  • Hill, I. R., and Wright, S. J. L. (eds.), 1978, Pesticide Microbiology, Academic Press, New York.

    Google Scholar 

  • Hillmer, P., and Fahlbusch K., 1979, Evidence for an involvement of glutamine synthetase in regulation of nitrogenase activity inRhodopseudomonas capsulata, Arch Microbiol 122:213–218.

    Article  CAS  Google Scholar 

  • Hilpert, R., Winter, J., Hammes, W., and Kandier, O., 1981, The sensitivity of archaebac- teria to antibiotics, Zentralbl Bakteriol Hyg. Abt. Orig. 2:11–20.

    CAS  Google Scholar 

  • Hines, M. E., and Lyons, W. B., 1982, Biogeochemistry of nearshore Bermuda sediments. I. Sulfate reduction rates and nutrient generation. Mar. Ecol. Prog. Ser. 8:87–94.

    Article  CAS  Google Scholar 

  • Hobbie, J., and Williams, P. J. LeB. (eds.), 1984, Heterotrophic Activity in the Sea, Plenum Press, New York.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N., 1984, Biochemical Adaptation, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Hordijk, K. A., Hagenaars, C. P. M. M., and Cappenberg, T. E., 1985, Kinetic studies of bacterial sulfate reduction in freshwater sediments by high-pressure liquid chromatography and microdistillation, Appl Environ. Microbiol 49:434–440.

    PubMed  CAS  Google Scholar 

  • Horrigan, S. G., and Capone, D. G., 1985, Rates of nitrification and nitrate reduction in nearshore marine sediments at near ambient substrate concentrations.Mar. Chem. 16:317–327.

    Article  CAS  Google Scholar 

  • Hou, C. T., Patel, R., Laskin, A. I., and Bamabe, N., 1979, Microbial oxidation of gaseous hydrocarbons: Epoxidation of C2 to C4-alkenes by methylotrophic bacteria, Appl Environ. Microbiol 38:127–134.

    PubMed  CAS  Google Scholar 

  • Houchins, J. P., and Burris, R. H., 1981, Physiological reactions of the reversible hydrogen- ase from Anabaena 7120, Plant Physiol 68:717–721.

    Article  PubMed  CAS  Google Scholar 

  • Howarth, R. W., and Cole, J. J., 1985, Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229:653–655.

    Article  PubMed  CAS  Google Scholar 

  • Huber, D. M., Murray, G. A., and Crane, J. M., 1969, Inhibition of nitrification as a deterrent to nitrogen loss. Soil Sei. Soc. Am. J. 33:975–976.

    Article  CAS  Google Scholar 

  • Huber, D. M., Warren, H. L., Nelson, D. W., and Tsai, C. Y., 1977, Nitrification inhibitors—New tools for food production. Bioscience 27:523–529.

    Article  Google Scholar 

  • Hubley, J. H., Thomson, A. W., and Wilkinson, J. F., 1975, Specific inhibitors of methane oxidation inMethylosinus trichosporium. Arch. Microbiol 102:199–202.

    Article  CAS  Google Scholar 

  • Hyman, M. R., and Arp, D., 1987, Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms, Appl Environ. Microbiol 53:298–303.

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and Wood, P. M., 1985, Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene, Biochem. J. 227:719–725.

    PubMed  CAS  Google Scholar 

  • Hynes, R. K., and Knowles, R., 1978, Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea, FEMS Microbiol Lett. 4:319–321.

    Article  CAS  Google Scholar 

  • Hynes, R. K., and Knowles, R., 1982, Effect of acetylene on autotrophic and heterotrophic nitrification, Can. J. Microbiol 28:334–340.

    Article  CAS  Google Scholar 

  • Hynes, R. K., and Knowles, R., 1983, Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: A reexamination, Appl Environ. Microbiol 45:1178–1182.

    PubMed  CAS  Google Scholar 

  • Hynes, R. K., and Knowles, R., 1984, Production of nitrous oxide by Nitrosomonas europaea: Effects of acetylene, pH, and oxygen. Can. J. Microbiol 30:1397–1404.

    Article  CAS  Google Scholar 

  • Hag, L., and Curtis, R. W., 1968, Production of ethylene by fungi, Science 159:1357.

    Article  Google Scholar 

  • Indrebo, G., Pengerud, B., and Dundas, I., 1979, Microbial activities in a permanently stratified estuary. II. Microbial activities at the oxic-anoxic interface, Mar. Biol 51:305–309.

    Article  Google Scholar 

  • Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.

    PubMed  CAS  Google Scholar 

  • Iversen, N., and Jorgensen, B. B., 1985, Anaerobic methane oxidation rates at the sulfate- methane transition in marine sediments from Kattegat and Skagerrat (Denmark), Lim- nol. Oceanogr. 30:944–955.

    Article  CAS  Google Scholar 

  • Iversen, N., Oremland, R. S., and Klug, M. J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane-oxidation, Limnol. Oceanogr. 32:804–814.

    Article  CAS  Google Scholar 

  • Izawa, S., 1980, Acceptors and donors for chloroplast electron transport, in: Methods in Enzymology, Vol. 69 (A. San Pietro, ed.), pp. 413–434, Academic Press, New York.

    Google Scholar 

  • Jacobson, M. E., Mackin, J. E., and Capone, D. G., 1987, Ammonium production in sediments inhibited with molybdate: Implications for the sources of ammonium in anoxic marine sediments, Appl. Environ. Microbiol, 53:2435–2439.

    PubMed  CAS  Google Scholar 

  • Jain, B., 1982,Handbook of Enzyme Inhibitors, Wiley, New York.

    Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O., 1979, Chemosynthetic primary production at east Pacific sea floor spreading centers. Bioscience 29:592–598.

    Article  CAS  Google Scholar 

  • Jarrell, K. F., and Hamilton, E. A., 1985, Effect of gramicidin on methanogenesis by various methanogenic bacteria, Appl. Environ. Microbiol. 50:179–182.

    PubMed  CAS  Google Scholar 

  • Jarrell, K. F., and Sprott, G. D., 1983, The effect of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii, Arch. Biochem. Biophys. 225:33–41.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, M. C., and Kemp, W. M., 1984, The coupling of nitrification and denitrification in two estuarine sediments, Limnol. Oceanogr. 29:598–608.

    Article  Google Scholar 

  • Jensen, S., and Jumelov, A., 1969, Biological methylation of mercury in aquatic environments, Nature 223:753–754.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. W., and Sieburth, J. McN., 1982, In-situ morphology and occurrence of eucary- otic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters, J. Phycol. 18:318–327.

    Article  Google Scholar 

  • Jones, J. B., and Stadtman, T. A., 1977, Methanococcus vannielii: Culture and effects of selenium and tungsten on growth, J. Bacteriol. 130:1404–1406.

    PubMed  CAS  Google Scholar 

  • Jones, J. B., and Stadtman, T. C., 1981, Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form, J. Biol. Chem. 256:656–663.

    PubMed  CAS  Google Scholar 

  • Jones, J. G., and Simon, B. M., 1985, Interactions of acetogens and methanogens in anaerobic freshwater sediments, Appl. Environ. Microbiol. 49:944–948.

    PubMed  CAS  Google Scholar 

  • Jones, J. G., Simon, B. M., and Gardener, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol. 128:1–11.

    CAS  Google Scholar 

  • Jones, R. D., and Morita, R. Y., 1983a, Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers, Can. J. Microbiol. 29:1545–1551.

    Article  CAS  Google Scholar 

  • Jones, R. D., and Morita, R. Y., 1983b, Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europea, Appl. Environ. Microbiol. 45:401–410.

    PubMed  CAS  Google Scholar 

  • Jones, R. D., and Morita, R. Y., 1984, Effect of several nitrification inhibitors on carbon monoxide and methane oxidation by ammonium oxidizers, Can. J. Microbiol. 30:1276–1279.

    Article  CAS  Google Scholar 

  • Jones, R. D., Morita, R. Y., and Griffiths, R. P., 1984, Methods for estimating in situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation, Mar. Ecol. Prog Ser. 17:259–269.

    Article  CAS  Google Scholar 

  • Jones, T. W., and Estes, P. S., 1984, Uptake and phytotoxicity of soil-sorbed atrazine for the submerged aquatic plant,Potamogeton perfoliatus L.,Arch. Environ. Contam. Toxicol. 13:237–241.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B., 1982, Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Phil Trans. R. Soc. Lond. B 298:543–561.

    Article  CAS  Google Scholar 

  • Kandier, O., and Hippe, H., 1977, Lack of peptidoglycan in the cell walls of Methanosarcina barken, Arch. Microbiol. 113:57–60.

    Article  Google Scholar 

  • Kandier, O., and König, H., 1978, Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118:141–152.

    Article  Google Scholar 

  • Kanner, D., and Bartha, R., 1979, Growth of Nocardia rhodochrous on acetylene gas, J. Bacteriol. 139:225–230.

    PubMed  CAS  Google Scholar 

  • Kanner, D., and Bartha, R., 1982, Metabolism of acetylene by Nocardia rhodochrous, J. Bacteriol. 150:989–992.

    PubMed  CAS  Google Scholar 

  • Kaplan, W. A., 1983, Nitrification, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 139–190, Academic Press, New York.

    Google Scholar 

  • Kaspar, H. F., 1982, Denitrification in marine sediments: Measurement of capacity and estimate of in situ rate, Appl. Environ. Microbiol. 43:522–527.

    PubMed  CAS  Google Scholar 

  • Kaspar, H. F., and Tiedje, J. M., 1981, Denitrification and dissimilatory reduction of nitrate and nitrite in the bovine rumen: Nitrous oxide production and effect of acetylene, Appl. Environ. Microbiol. 41:705–709.

    PubMed  CAS  Google Scholar 

  • Katunuma, N., Umezawa, H., and Holzer, H., 1983, Proteinase Inhibitors: Medical and Biological Aspects, Japan Science Society Press, Tokyo.

    Google Scholar 

  • Kays, S. J., and Pallas, J. E., Jr., 1980, Inhibition of photosynthesis by ethylene. Nature 285:51–52.

    Article  CAS  Google Scholar 

  • Kelly, D. P., 1982, Biochemistry of the chemolithotrophic oxidation of inorganic sulphur, Phil. Trans. R. Soc. Lond. B 298:499–528.

    Article  CAS  Google Scholar 

  • Kemps, C. W., Curtiss, M. A., Robrish, S. A., and Bowen, W. H., 1983, Biogenesis of methane in primate dental plaque, FEBS Lett. 155:61–64.

    Article  Google Scholar 

  • Kenealy, W., and Zeikus, J. G., 1981, Influence of corrinoid antagonists on methanogen metabolism, J. Bacteriol. 146:133–140.

    PubMed  CAS  Google Scholar 

  • Kepkay, P. E., Cooke, R. C., and Novitsky, J. A., 1979, Microbial autotrophy: A primary source of organic carbon in marine sediments.Science 204:68–69.

    Article  PubMed  CAS  Google Scholar 

  • Kiene, R. P., and Capone, D. G., 1985, Degassing of pore water methane during sediment incubations, Appl. Environ. Microbiol. 49:143–147.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P., and Visscher, P., 1987. Metabolism of the terminal s-methyl group of methionine in anoxic sediments.Appl. Environ. Microbiol. 53:2426–2434.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P., Oremland, R. S., Catena, A., Miller, L. G., and Capone, D. G., 1986, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen, Appl. Environ. Microbiol 52:1037–1045.

    PubMed  CAS  Google Scholar 

  • King, G. M., 1984, Metabolism of trimethylamine, choline, and glycine betaine by sulfate- reducing and methanogenic bacteria in marine sediments, Appl Environ. Microbiol 48:719–725.

    PubMed  CAS  Google Scholar 

  • King, G. M., Klug, M. J., and Lovely, D. R., 1983, Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine, Appl Environ. Microbiol 45:1848–1853.

    PubMed  CAS  Google Scholar 

  • Knowles, R., 1979, Denitrification, acetylene reduction and methane metabolism in lake sediment exposed to acetylene, Appl Environ. Microbiol 38:486–493.

    PubMed  CAS  Google Scholar 

  • Knowles, R., 1983, Denitrification, Microbiol Rev. 46:43–70.

    Google Scholar 

  • Kosiur, D. R., and Warford, A. L., 1979, Methane production and oxidation in Santa Barbara Basin sediments, Est. Coast. Mar. ScL 8:379–385.

    Article  CAS  Google Scholar 

  • Kuenen, J. G., and Beudeker, R. F., 1982, Microbiology of thiobacilli and other sulphur- oxidizing autotrophs, mixotrophs and heterotrophs, Phil Trans. R. Soc. Lond. B 298:473–497.

    Article  CAS  Google Scholar 

  • Kun, E., 1969, Mechanism of action of fluoro analogs of citric acid cycle compounds: An.essay on biochemical tissue specificity, in: Citric Acid Cycle, Control and Compartmen- tation (J. M. Lowenstein, ed.), pp. 297–339, Dekker, New York.

    Google Scholar 

  • Lai, R. (ed.), 1984, Insecticide Microbiology, Springer-Verlag, Berlin.

    Google Scholar 

  • Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue- green algae), Biol Rev. 56:589–660.

    Article  CAS  Google Scholar 

  • Lambert, G. R., Daday, A., and Smith, G. D., 1979, Effects of ammonium ions, oxygen, carbon monoxide, and acetylene on anaerobic and aerobic hydrogen formation by Ana- baena cylindrica B629, Appl Environ. Microbiol 38:521–529.

    PubMed  CAS  Google Scholar 

  • Lancini, G., and Parenti, F., 1982, Antibiotics: An Integrated View, Springer-Verlag, Berlin.

    Google Scholar 

  • Landry, M. R., and Hassett, R. P., 1982, Estimating the grazing impact of marine micro-’ Zooplankton, Mar. Biol 67:282–288.

    Article  Google Scholar 

  • Legendre, L., Demers, S., Yentsch, C. M., and Yensch, C. S., 1983, The 14C method: Patterns of dark CO2 fixation and DCMU correction to replace the dark bottle, Limnol Ocean-ogr. 28:996–1003.

    Article  Google Scholar 

  • Leighton, T., Markes, E., and Leighton, F., 1981, Pesticides: Insecticides and fungicides are Chitin synthesis inhibitors, Science 213:905–907.

    Article  PubMed  CAS  Google Scholar 

  • Lethbridge, G., Davison, M. S., and Sparung, G. P., 1982, Critical evaluation of the acetylene reduction test for estimating the activity of nitrogen-fixing bacteria associated with the roots of wheat and bariey.Soil Biol Biochem. 14:27–35.

    Article  CAS  Google Scholar 

  • Li, W. K. W., and Dickie, P. M., 1985a, Metabolic inhibition of size-fractionated marine plankton radiolabeled with amino acids, glucose, bicarbonate, and phosphate in the light and dark, Microb. Ecol 11:11–24.

    Article  Google Scholar 

  • Li, W. K. W., and Dickie, P. M., 1985b, Growth of bacteria in seawater filtered through 0.2 /Ltm Nuclepore membranes: Implications for dilution experiments. Mar. Ecol Prog. Ser. 26:245–252.

    Article  Google Scholar 

  • Li, W. K. W., Subba Rao, V., Harrison, W. G., Smith, J. C., Gullen, J. J., Irwin, B., and Piatt, T., 1983, Autotrophic picoplankton in the tropical ocean. Science 219:292–295.

    Article  PubMed  CAS  Google Scholar 

  • Lidstrom, M. E., 1983, Methane consumption in Framvaren Fjord, Limnol Oceanogr. 28:1247–1251.

    Article  CAS  Google Scholar 

  • Lipschultz, F., 1981, Methane release from a brackish intertidal salt-marsh embayment of Chesapeake Bay, Maryland, Estuaries 4:143–145.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Klug, M. J., 1982, Intermediary metabolism of organic matter in the sediments of a eutrophic lake,Appl Environ. Microbiol 43:522–560.

    Google Scholar 

  • Lovley, D. R., and Klug, M. J., 1983, Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations, Appl Environ. Microbiol 45:187–192.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl Environ. Microbiol 43:1373–1379.

    PubMed  CAS  Google Scholar 

  • Macalaster, E. G., Barker, D. A., and Kasper, M. W. (eds.), 1983, Chesapeake Bay: A Profile of Environmental Change, U.S. Environmental Protection Agency.

    Google Scholar 

  • Martens, C. S., and Bemer, R. A., 1977, Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases, Limnol Oceanogr. 22:10–25.

    Article  CAS  Google Scholar 

  • Martikainen, P. J., 1985, Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil, Appl Environ. Microbiol 50:1519–1525.

    PubMed  CAS  Google Scholar 

  • Maurino, S. G., Vargas, M. A., Aparicio, P. J., and Maldonado, J. M., 1983, Blue-light reactivation of spinach nitrate reductase inactivated by acetylene or cyanide, Physiol Plant. 57:411–416.

    Article  CAS  Google Scholar 

  • McBride, B. C., and Edwards, T. L., 1977, Role of methanogenic bacteria in the alkylation of arsenic and mercury, in: Biological Implications of Metals in the Environment (H. Drucker and R. E. Wildung, eds.), pp. 1–17, ERDA Symposium Series 42, NTIS, Springfield, Virginia.

    Google Scholar 

  • McCambridge, J., and McMeekin, T. A., 1980, Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples, Appl Environ. Microbiol. 40 :901–911.

    Google Scholar 

  • McCarthy, R. E., 1980, Delineation of the mechanism of ATP synthesis in chloroplasts: Use of uncouplers, energy transfer inhibitors, and modifiers of coupling factor, in: Methods in Enzymology, Vol. 69 (A. San Pietro, ed.) pp. 719–728, Academic Press, New York.

    Google Scholar 

  • McFadden, B. A., and Purohit, K., 1978, Chemosynthetic, photosynthetic, and cyanobac- terial ribulose bisphosphate carboxylase, in: Photosynthetic Carbon Assimilation (W. Siegleman and G. Hine, eds.), pp. 179–207. Plenum Press, New York.

    Google Scholar 

  • McKenna, C. E., and Huang, C. W., 1979, In vivo reduction of cyclopropene by Azotobacter vinelandii nitrogenase. Nature 280:609–610.

    Article  CAS  Google Scholar 

  • McKenna, C. E., Benemann, J. R., and Taylor, T. G., 1970, A vanadium containing nitrogenase preparation: Implications for the role of molybendenum in nitrogen fixation, Biochem. Biophys. Res. Commun. 41:1501–1508.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, A. J., 1980, Evaluation of bromomethane as a suitable analogue in methane oxidation studies, FEMS Microbiol. Lett. 9:297–300.

    Article  CAS  Google Scholar 

  • Meyers, A. J., 1982, Obligate methylotrophy: Evaluation of dimethylether as a C-1 compound, J. Bacteriol. 150:966–968.

    PubMed  CAS  Google Scholar 

  • Moller, M. M., Nielsen, L. P., and Jorgensen, B. B., 1985, Oxygen responses and mat formation by Beggiatoa spp., Appl. Environ. Microbiol. 50:373–382.

    PubMed  CAS  Google Scholar 

  • Mopper, K., and Taylor, B. F., 1986, Biogeochemical cycling of sulfur: Thiols in coastal marine sediments, in: Organic Marine Geochemistry (M. Sohn, ed.), pp. 324–339, American Chemical Society Symposium Series, Washington, D.C.

    Chapter  Google Scholar 

  • Moreno-Vivian, C., Cejudo, F. J., Cardenas, J., and Castillo, F., 1983, Ammonia assimilation pathways in Rhodopseudomonas capsulata El Fl, Arch. Microbiol. 136:147–151.

    Article  CAS  Google Scholar 

  • Moriarty, D. J. W., and Hayward, A. C., 1982, Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments, Microb. Ecol. 8:1–14.

    Article  Google Scholar 

  • Mosier, A. R., 1980, Acetylene inhibition of ammonium oxidation in soil.Soil Biol. Biochem. 12:443–444.

    Article  CAS  Google Scholar 

  • Mountfort, D. O., Asher, R. A., Mays, E. L., and Tiedje, J. M., 1980, Carbon and electron flow in mud and sandflat sediments at Delaware Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 39:686–694.

    PubMed  CAS  Google Scholar 

  • Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the North Atlantic, Limnol. Oceanogr. 30:47–58.

    Article  Google Scholar 

  • Murray, P. A., and Zinder, S. H., 1984, Nitrogen fixation by a methanogenic archaebacter- ium. Nature 312:284–286.

    Article  CAS  Google Scholar 

  • Naumann, E., Fahlbusch, K., and Gottshalk, G., 1984, Presence of a trimethylamine:HS- coenzyme M methyltransferase in Methanosarcina barkeri, Arch. Microbiol. 138:79–83.

    Article  CAS  Google Scholar 

  • Nedwell, D. B., 1982, The cycling of sulfur in marine and freshwater sediments, in: Sediment Microbiology, (D. B. Nedwell and C. M. Brown, eds.), pp. 73–106, Academic Press, New York.

    Google Scholar 

  • Nedwell, D. B., and Aziz, S., 1980, Heterotrophic nitrogen fixation in an intertidal saltmarsh sediment. Est. Coast. Mar. Sei. 10:699–702.

    Article  CAS  Google Scholar 

  • Nedwell, D. B., and Banat, L M., 1981, Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microb. Ecol. 7:305–313.

    Article  CAS  Google Scholar 

  • Newell, S. Y., Sherr, F. B., Sherr, E. B., and Fallon, R. D., 1983, Bacterial response to presence of eukaryote inhibitors in water from a coastal marine environment, Mar. Environ. Res. 10:147–157.

    Article  Google Scholar 

  • Nicholas, D. J. D., 1978, Intermediary metabolism of nitrifying bacteria, with particular reference to nitrogen, carbon and sulfur compounds, in: Microbiology—1978 (D. Schlessinger, ed.), pp. 305–309, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Nicholas, D. J. D., Wilson, P. W., Heinen, W., Palmer, G., and Beinert, H., 1962. Use of electron paramagnetic resonance spectroscopy in investigations of functional metal components in micro-organisms, Nature 196:433–436.

    Article  PubMed  CAS  Google Scholar 

  • Nishio, T., Koike, L, and Hattori, A., 1982, Denitrification nitrogen reduction and oxygen consumption in coastal and estuarine sediments, Appl Environ. Microbiol 43:648–653.

    PubMed  CAS  Google Scholar 

  • Norqvist, A., and RofFey, R., 1983, Alternative method for monitoring the effect of inhibitors on sulfate reduction, J. Gen. Appl. Microbiol. 29:335–344.

    Article  CAS  Google Scholar 

  • Notton, B. A., Watson, E. F., and Hewitt, E. J., 1979, Effects of A-serve (2-chloro-6- [trichloromethyl] pyridine) formulations on nitrification and on loss of nitrate in sand culture experiements, Plant Soil 51:1–12.

    Article  CAS  Google Scholar 

  • O’Neill, J. G., and Wilkinson, J. F., 1977, Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation, J. Gen. Microbiol. 100:407–412.

    Google Scholar 

  • Oremland, R. S., 1975, Methane production in shallow-water, tropical marine sediments, Appl. Microbiol 30:602–608.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., 1976, Studies on the methane cycle in tropical marine sediments. Dissertation, University of Miami, Miami, Florida.

    Google Scholar 

  • Oremland, R. S., 1979, Methanogenic activity in plankton samples and fish intestines: A mechanism for in situ methanogenesis in oceanic surface waters, Limnol Oceanogr. 24:1136–1141.

    Article  CAS  Google Scholar 

  • Oremland, R. S., 1981, Microbial formation of ethane in anoxic estuarine sediments, Appl Environ. Microbiol 42:122–129.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., 1983, Hydrogen metabolism by decomposing cyanobacterial aggregates in Big Soda Lake, Nevada, Appl Environ. Microbiol 45:1519–1525.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., and Polcin, S., 1982, Methanogenesis and sulfate-reduction: Competitive and non-competitive substrates in estuarine sediments, Appl Environ. Microbiol 44:1270–1276.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., and Silverman, M. P., 1979, Microbial sulfate reduction measured by an automated electrical impedance technique,Geomicrobiol J. 1:355–372.

    Article  CAS  Google Scholar 

  • Oremland, R. S., and Taylor, B. F., 1975, Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms,Appl Microbiol 30:707–709.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., and Taylor, B. F., 1978, Sulfate reduction and methanogenesis in marine sediments, Geochim. Cosmochim. Acta 42:209–214.

    Article  CAS  Google Scholar 

  • Oremland, R. S., and Zehr, J. P., 1986, Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium, Appl Environ. Microbiol 52:1031–1036.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., Marsh, L., and Des Marais, D. J., 1982a, Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake, Appl Environ. Microbiol 43:462–468.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., Marsh, L. M., and Polcin, S., 1982b, Methane production and simultaneous sulfate reduction in anoxic saltmarsh sediments. Nature 296:143–145.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Culbertson, C. W., and Simoneit, B. R. T., 1982c, Methanogenic activity in sediment from Leg 64, Gulf of California, Init. Rep. Deep Sea Drilling Project 64:759–762.

    Google Scholar 

  • Oremland, R. S., Umberger, C., Culbertson, C. W., and Smith, R. L., 1984, Denitrification in San Francisco bay intertidal sediments, Appl Environ. Microbiol 47:1106–1112.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., Cloem, J. E., Sofer, Z., Smith, R. L., Culbertson, C. W., Zehr, J., Miller, L., Cole, B., Harvey, R., Iversen, N., Klug, H., Des Marais, D. J., and Rav, G., 1988, Microbial and biogeochemical processes in Big Soda Lake, Nevada, in: Lacustrine petroleum source rocks (K. Kelts and A. Fleet, eds.) Geological Society, London (in press).

    Google Scholar 

  • Orth, R. J., and Moore, K. A., 1983, Chesapeake Bay: An unprecedented dedine in submerged aquatic vegetation, Science 222:51–53.

    Article  PubMed  CAS  Google Scholar 

  • Pace, J., and McDermott, E, 1952, Methionine sulphoximine and some enzyme systems involving glutamine, Nature 169:415–416.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W., 1983, Environmental regulation of H2 utilization (3H2 exchange) among natural and laboratory populations of N2 and non-Na fixing phytoplankton. Microb, Ecol 9:79–97.

    Article  CAS  Google Scholar 

  • Panganiban, Jr., A. T., Patt, T. E., Hart, W., and Hanson, R. S., 1979, Oxidation of methane in the absence of oxygen in lake water samples, Appl Environ. Microbiol 37:303–309.

    PubMed  CAS  Google Scholar 

  • Patrick, Jr., W. H., Peterson, F. J., and Turner, F. T., 1968, Nitrification inhibitors for lowland rice. Soil Sei. 105:103–105.

    CAS  Google Scholar 

  • Paul, J. H. 1984. Effects of antimetabolites on the adhesion of an estuarine Vibrio sp. to polystyrene, Appl. Environ. Microbiol. 48:924–929.

    PubMed  CAS  Google Scholar 

  • Payne, W. J., 1973, Gas chromatographic analysis of denitrification by marine bacteria, in: Estuarine Microbial Ecology (L. H. Stevenson, ed.), pp. 53–71, University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Payne, W. J., 1981,Denitrification, Wiley, New York.

    Google Scholar 

  • Payne, W. J., 1984, Influence of acetylene on microbial and enzymatic assays,J. Microbiol. Meth. 2:117–133.

    Article  CAS  Google Scholar 

  • Payne, W. J., and Grant, M. A., 1982, Influence of acetylene on growth of sulfate-respiring bacteria, Appl. Environ. Microbiol. 43:727–730.

    PubMed  CAS  Google Scholar 

  • Pearsall, K. A., and Bonner, F. T., 1980, Analysis of dinitrogen-nitrogen oxide mixtures employing direct vacuum line-gas Chromatograph injection, J. Chromatog. 200:224–227.

    Article  CAS  Google Scholar 

  • Peck, Jr., H. D., 1959, The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfiirican, Proc. Natl. Acad. Sei. USA 45:701–708.

    Article  CAS  Google Scholar 

  • Peck, Jr., H. D., 1960, Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen byDesulfovibrio desulfuricans, J. Biol. Chem. 235:2734–2738.

    PubMed  CAS  Google Scholar 

  • Peck, Jr., H. D., 1962, The role of adenosine-5’-5-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans, J. Biol. Chem. 237:198–203.

    PubMed  CAS  Google Scholar 

  • Pedersen, D., and Sayler, G. D., 1981, Methanogenesis in freshwater sediments: Inherent variability and effects of environmental contaminants. Can. J. Microbiol. 27:198–205.

    Article  PubMed  CAS  Google Scholar 

  • Peeters, T., and Aleem, M. I. H., 1970, Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans, Arch. Microbiol. 71:319–330.

    CAS  Google Scholar 

  • Pelczar, M. J., Jr., Chan, E. C. S., and Krieg, N. R., 1986, Microbiology, 5th ed., McGraw- Hill, New York.

    Google Scholar 

  • Peschek, G. A., 1979, Evidence for two functionally distinct hydrogenases in Anacystis nidu- lans. Arch. Microbiol. 123:81–92.

    Article  CAS  Google Scholar 

  • Peterson, H. G., 1986,Antimicrobial Agents Annual, Elsevier, New York.

    Google Scholar 

  • Peterson, R. B., and Burris, R. H., 1976, Conversion of acetylene reduction rates to nitrogen fixation rates in natural populations of blue-green algae, Anal. Biochem. 73:404–410.

    Article  PubMed  CAS  Google Scholar 

  • Phelan, P. J., and Mattigod, S. V., 1984, Adsorption of molybdate anion (MoO4 2) by sodium-saturated kaolinite,Clays Clay Minerals 32:45–48.

    Article  CAS  Google Scholar 

  • Phelps, T. J., and Zeikus, J. G., 1985, Effect of fall turnover on terminal carbon metabolism in Lake Mendota sediments, Appl. Environ. Microbiol. 50:1285–1291.

    PubMed  CAS  Google Scholar 

  • Pizzey, J. A., Bennett, F. A., and Jones, G. E., 1983, Monensin inhibits initial spreading of cultured human fibroblasts, Nature 305:315–317.

    Article  PubMed  CAS  Google Scholar 

  • Piatt, T., Subba Rao, V., and Irwin, B., 1983, Photosynthesis of picoplankton in the oligo- trophic ocean, Nature 301:702–704.

    Article  Google Scholar 

  • Postgate, J., 1949, Competitive inhibition of sulfate reduction by selenate. Nature 172:670–671.

    Article  Google Scholar 

  • Postgate, J. R., 1952, Competitive and non-competitive inhibitors of bacterial sulfate reduction, J. Gen. Microbiol. 6:128–142.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R., 1979, The Sulfate-Reducing Bacteria, Cambridge University Press, Cambridge.

    Google Scholar 

  • Postgate, J. R., 1982, The Fundamentals of Nitrogen Fixation, Cambridge University Press, Cambridge.

    Google Scholar 

  • Poth, M., and Focht, D. D., 1985, ’15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification, Appl. Environ. Microbiol 49:1134–1141.

    Google Scholar 

  • Powell, S. J., and Prosser, J. I., 1985, The effects of nitrapyrin and chloropicolinic acid on ammonium oxidation byNitrosomonas europaea, FEMS Microbiol Lett. 28:51–54.

    Article  CAS  Google Scholar 

  • Primrose, S. B., 1976, Ethylene-forming bacteria from soil and water, J. Gen. Microbiol 97:343–346.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1977, Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli, J. Gen. Microbiol 98:519–528.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., and Dilworth, M. J., 1976, Ethylene production by bacteria, J. Gen. Microbiol 93:l77–181.

    Google Scholar 

  • Prins, R. A., van Nevel, C. J., and Demeyer, D. L, 1972, Pure culture studies of inhibitors for methanogenic bacteria, Antonie Leeuwenhoek Microbiol Serol 38:281–287.

    Article  CAS  Google Scholar 

  • Prins, R. A., Cline-Thiel, W., Malestein, A., and Counotte, G. H. M., 1980, Inhibition of nitrate reduction in some rumen bacteria by tungstate, Appl Environ. Microbiol 40:163–165.

    PubMed  CAS  Google Scholar 

  • Raimbault, M., 1975, Etude d’influence inhibitrice de I’acetylene sur la formation biolo- gique du methane dans un sol riziere, Ann. Microbiol Inst. Pasteur 126A:247–258.

    CAS  Google Scholar 

  • Ramirez, C., and Alexander, M., 1980, Evidence suggesting protozoan predation on Rhi- zobium associated with germinating seeds and in the rhizosphere of beans(Phaseolus vulgaris L.),Appl Environ. Microbiol 40:492–499.

    PubMed  CAS  Google Scholar 

  • Ramos, J. L., and Guerrero, M. G., 1983, Involvement of ammonium metaboHsm in the nitrate inhibition of nitrogen fixation in Anabaena sp. ATCC 33047, Arch. Microbiol 136:81–83.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., 1976, Methane consumption in Cariaco Tranch waters and sediments, Earth Planet. ScL Lett. 15:334–337.

    Google Scholar 

  • Reeburgh, W. S., 1980, Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci Lett. 47:345–352.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., and Heggie, D. T., 1977, Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments, Limnol Oceanogr. 22:1–9.

    Article  CAS  Google Scholar 

  • Ribbons, D. W., 1975, Oxidation of C-1 compounds by particulate fractions from Meth- ylococcus capsulatus: Distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase), J. Bacteriol 122:1351–1363.

    PubMed  CAS  Google Scholar 

  • Ribbons, D. W., and Michaelover, J. L., 1970, Methane oxidation by cell-free extracts of Methylococcus capsulatus, FEBS Lett. 11:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, M. H., 1969, Antimetabolites, antibacterial agents and enzyme inhibitors, in: Data for Biochemical Research, 2nd ed. (R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, eds.), pp. 335–404, Oxford University Press, New York.

    Google Scholar 

  • Rigano, C., Rigano, V., Vona, V., and Fuggi, A., 1979, Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red alga Cyan- idium caldarium, Arch. Microbiol 121:117–120.

    Article  CAS  Google Scholar 

  • Rittmann, B. E., and McCarty, P. L., 1980, Utilization of dichloromethane by suspended and fixed-film bacteria, Appl Environ. Microbiol 39:1225–1226.

    PubMed  CAS  Google Scholar 

  • Rivera-Ortiz, J. M., and Burris, R. H., 1975, Interactions among substrates and inhibitors of nitrogenase, J. Bacteriol 123:537–545.

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., and Lipmann, F., 1958, Enzymatic synthesis of adenosine-5’-phosphosul- fate, J. Biol Chem. 233:686–690.

    PubMed  CAS  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R., 1986, The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme, Nature 322:388–390.

    Article  CAS  Google Scholar 

  • Rodgers, G. A., and Ashworth, J., 1982, Bacteriostatic action of nitrification inhibitors, Can. J. Microbiol 28:1093–1100.

    Article  CAS  Google Scholar 

  • Rodgers, G. A., Ashworth, J., and Walker, N., 1980, Recovery of nitrifier populations from inhibition by nitrapyrin or carbon disulfide, Zentralbl BakterioL Parasitkd Infek- tionskr. Hyg. Abt. 2 135:477–483.

    CAS  Google Scholar 

  • Rosson, R. A., and Nealson, K. H., 1982, Manganese binding and oxidation by spores of a marine bacillus, J. Bacteriol 151:1027–1034.

    PubMed  CAS  Google Scholar 

  • Rozyccki, M., and Bartha, R., 1981, Problems associated with the use of azide as an inhibitor of microbial activity in soil, Appl Environ. Microbiol. 41:833–846.

    Google Scholar 

  • Rudd, J. W., and Hamilton, R. D., 1978, Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism,Limnol. Oceanogr. 23:337–348.

    Article  CAS  Google Scholar 

  • Rudd, J. W. M., Hamilton, R. D., and Campbell, N. E. R., 1974, Measurement of microbial oxidation of methane in lakewater, Limnol. Oceanogr. 19:519–524.

    Article  CAS  Google Scholar 

  • Rudd, J. W., Fututania, A., Flett, R. J., and Hamilton, R. D., 1976, Factors controlling methane oxidation in shield lakes: The role of nitrogen fixation and oxygen concentration, Limnol. Oceanogr. 21:357–364.

    Article  CAS  Google Scholar 

  • Ryden, J. C., 1982, Effects of acetylene on nitrification and denitrification in two soils during incubation with ammonium nitrate, J. Soil Sei. 33:263–270.

    CAS  Google Scholar 

  • Saino, T., and Hattori, A., 1982, Aerobic nitrogen fixation by the marine non-heterocystous cyanobacteriumTrichodesmium (Oscillatoria) spp.: Its protective mechanism against oxygen. Mar. Biol. 70:251–254.

    Article  Google Scholar 

  • Saleh, A. M., Macpherson, R., and Miller, J. D. A., 1964, The effect of inhibitors on sulfate reducing bacteria: A compilation, J. Appl. Bacteriol 27:281–293.

    Article  CAS  Google Scholar 

  • Salvas, P. L., and Taylor, B. F., 1980, Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin or N-serve), Curr. Microbiol. 4:305–308.

    Article  CAS  Google Scholar 

  • Salvas, P. L., and Taylor, B. F., 1984, Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and Methylosinus trichosporium OB3b, Curr. Microbiol. 10:53–56.

    Article  CAS  Google Scholar 

  • Samuelsson, M.-O., 1985, Dissimilatory nitrate reduction to nitrite, nitrous oxide, and ammonium by Pseudomonas putrefaciens, Appl Environ. Microbiol. 50:812–815.

    PubMed  CAS  Google Scholar 

  • Sanders, R. W., and Porter, K. G., 1986, Use of metabolic inhibitors to estimate protozoo- plankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion, Appl. Environ. Microbiol. 52:101–107.

    PubMed  CAS  Google Scholar 

  • Schannong Jorgensen, K., Beck Jensen, H., and Sorensen, J., 1984, Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Can. J. Microbiol. 30:1073–1078.

    Article  Google Scholar 

  • Schink, B., 1985a, Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylen- icus sp. nov. Arch. Microbiol 142:295–301.

    Article  CAS  Google Scholar 

  • Schink, B., 1985b, Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons, FEMS Microbiol Ecol 31:63–68.

    Article  CAS  Google Scholar 

  • Scranton, M. I., 1983, The role of the cyanobacteriumOscillatoria (Trichodesmium) thie- bautii in the marine hydrogen cycle. Mar. Ecol Prog. Ser. 11:79–87.

    Article  CAS  Google Scholar 

  • Scranton, M. I., 1984, Hydrogen cycling in the waters near Bermuda: The role of the nitrogen fixer, Oscillatoria thiebautii, Deep-Sea Res. 31:133–143.

    Article  CAS  Google Scholar 

  • Scranton, M. I., Novelli, P. C., and Loud, P. A., 1984, The distribution and cycUng of hydro-gen gas in the waters of two anoxic marine environments, Limnol Oceanogr. 29:993–1003.

    Article  CAS  Google Scholar 

  • Seitzinger, S., Nixon, S., Pilson, M. E. Q., and Burke, S., 1980, Denitrification and N2O production in near-shore marine sediments, Geochim. Cosmochim. Acta 44:1853–1860.

    Article  CAS  Google Scholar 

  • Shapiro, S., and Wolfe, R. S., 1980, Methyl-coenzyme M, an intermediate in methanogenic dissimilation of Q compounds by Methanosarcina barkeri, J. Bacteriol 141:728–734.

    PubMed  CAS  Google Scholar 

  • Shattuck, G. E., and Alexander, M., 1963, A differential inhibitor of nitrifying organisms, Soil Sei. Soc. Am. Proc. 27:600–601.

    Article  CAS  Google Scholar 

  • Shaw, D. G., Alperin, M. J., Reeburgh, W. S., and Mcintosh, D. J., 1984, Biogeochemistry of acetate in anoxic sediments of Skan Bay, Alaska, Geochim. Cosmochim. Acta 48:1819–1825.

    Article  CAS  Google Scholar 

  • Sherr, B. F., Sherr, E. B., Andrew, T. L., Fallon, R. D., and Newell, S. Y., 1987, Investigation of the trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water using selective metabolic inhibitors,Mar. Ecol. Prog. Ser., in press.

    Google Scholar 

  • Sieburth, J. McN., 1979,Sea Microbes, Oxford, London.

    Google Scholar 

  • Slater, J., and Capone, D. G., 1984, Effect of metals on nitrogen fixation and denitrification in slurries of anoxic saltmarsh sediment. Mar. Ecol. Prog. Ser. 18:89–95.

    Article  CAS  Google Scholar 

  • Slater, J. and Capone, D. G., 1987, Denitrification in aquifer soil and nearshore marine sediments influenced by groundwater nitrate, Appl. Environ. Microbiol. 53:1292–1297.

    PubMed  CAS  Google Scholar 

  • Slater, J., and Capone, D. G., 1988a, Denitrification by enrichment cultures of bacteria from sahmarsh sediments: Effects of Ni(II) and Cr(VI), manuscript submitted.

    Google Scholar 

  • Slater, D. G., and Capone, D. G., 1988b, Assessment of denitrification measurement in salt- marsh sediments by acetylene blockage, manuscript submitted.

    Google Scholar 

  • Slovacek, R. E., and Hannan, P. J., 1977, In vivo fluorescence determinations of phytoplank-ton chlorophylla, Limnol. Oceanogr. 22:919–924.

    Article  CAS  Google Scholar 

  • Smith, A. M., 1976, Ethylene in soil biology, Annu. Rev. Phytopathol. 14:53–73.

    Article  CAS  Google Scholar 

  • Smith, K. A., and Dowdell, R. J., 1974, Field studies of soil atmosphere. I. Relationships between ethylene, oxygen, soil-moisture content and temperature, Soil Sei. 25:217–230.

    CAS  Google Scholar 

  • Smith, K. A., and Restall, S. W. F., 1971, The occurrence of ethylene in anaerobic soil, J. Soil Sei. 22:430–433.

    CAS  Google Scholar 

  • Smith, K. A., and Russell, R. S., 1969, Occurrence of ethylene, and its significance, in anaerobic soil. Nature 222: 769–771.

    Article  CAS  Google Scholar 

  • Smith, L. A., Hills, S., and Yates, M. G., 1976, Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria,Nature 262:209–210.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. R., 1983, Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp., J. Bacteriol. 156:516–523.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and Mah, R. A., 1978, Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol, Appl. Environ. Microbiol. 36:870–879.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and Mah, R. A., 1981,2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants, Curr. Microbiol. 6:321–326.

    Article  CAS  Google Scholar 

  • Smith, M. S., 1982, Dissimilatory reduction of N02 - to NH4 + and N2O by a soil Citrobacter sp., Appl. Environ. Microbiol 43:854–860.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., and Klug, M. J., 1981, Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments, Appl. Environ. Microbiol. 42:116–121.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., and Oremland, R. S., 1987, Big Soda Lake (Nevada). 2. Pelagic sulfate reduction, Limnol Oceanogr., 32:794–803.

    Article  CAS  Google Scholar 

  • Smucker, R. A., and Simon, S. L., 1986, Some effects of diflubenzuron on growth and spo- rogenesis in Streptomyces spp., Appl Environ. Microbiol 51:25–31.

    PubMed  CAS  Google Scholar 

  • Somville, M., 1978, A method for the measurement of nitrification rates in water.Water Res. 12:843–848.

    Article  CAS  Google Scholar 

  • Somville, M., 1984, Use of nitrifying activity measurements for describing the effect of salinity on nitrification in the Sheldt Estuary, Appl. Environ. Microbiol. 47:424–426.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., 1978, Denitrification rates in a marine sediment as measured by the acetylene inhibition technique, Appl Environ. Microbiol. 35:301–305.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43:319–324.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., Tiedje, J. M., and Firestone, R. B., 1980, Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Appl. Environ. Microbiol. 39:105–108.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., Christensen, D., and Jorgensen, B. B., 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment, Appl. Environ. Microbiol. 42:5–11.

    PubMed  CAS  Google Scholar 

  • Sprott, G. D., and Jarrell, K. F., 1982, Sensitivity of methanogenic bacteria to dicyclohex- ylcarbodiimide.Can. J. Microbiol. 28:982–986.

    Article  PubMed  CAS  Google Scholar 

  • Sprott, G. D., Jarrell, K. F., Shaw, K. M., and Knowles, R., 1982, Acetylene as an inhibitor of methanogenic bacteria, J. Gen. Microbiol 128:2453–2462.

    CAS  Google Scholar 

  • Stevenson, J. C., and Confer, N. M., 1978, Summary of Available Information on Chesapeake Bay Submerged Vegetation, FWS/OBS-78/66, Fish and Wildlife Service, United States Department of the Interior.

    Google Scholar 

  • Stewart, W. D. P., and Rowell, P., 1975, Effects of l-methionine-of dl-sulfoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica, Biochem. Biophys. Res. Commun. 65:846–856.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H., 1967, In situ studies on N2 fixation, using the acetylene reduction technique, Proc. Natl Acad. Scl USA 58:2071–2078.

    Article  CAS  Google Scholar 

  • Stirling, D. I., and Dalton, H., 1979, Properties of the methane monooxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath), Eur. J. Biochem. 96:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, D. M., and Walker, D. A., 1972, Photosynthesis by isolated chloroplasts,Biochem. J. 128:1147–1157.

    PubMed  CAS  Google Scholar 

  • Stratton, G. W., Burrell, R. E., and Corke, C. T., 1982, Technique for identifying and minimizing solvent-pesticide interactions in bioassays. Arch. Environ. Contam. Toxicol 11:437–445.

    Article  CAS  Google Scholar 

  • Sutherland, J. B., and Cook, R. J., 1980, Effects of chemical and heat treatments on ethylene production in soil. Soil Biol Biochem. 12:357–362.

    Article  CAS  Google Scholar 

  • Sutton, W. D., 1980, Eifects of protein synthesis inhibitors on acetylene reduction activity of lupin root nodules, Aust. J. Plant Physiol 7:261–270.

    Article  CAS  Google Scholar 

  • Syrett, P. J., 1981, Nitrogen metabolism of microalgae, in: Physiological Basis of Phyto- plankton Ecology (T. Piatt, ed.). Can. Bull Fish. Aquat. Set Bull 210:182–210.

    Google Scholar 

  • Takeda, K., Tezuka, C., Fukuoka, S., and Takahara, Y., 1976, Role of copper ions in methane oxidation byMethanomonas margaritae, J. Ferment. Technol 54:557–562.

    CAS  Google Scholar 

  • Tam, T. Y., and Knowles, R., 1979, Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeroginosa, Can. J. Microbiol 25:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Tam, T. Y., Mayfield, C. I., and Inniss, W. E., 1981, Nitrogen fixation and methane metabolism in a stream-water system amended with leaf material. Can. J. Microbiol 27:511–516.

    Article  PubMed  CAS  Google Scholar 

  • Tam, T. Y., Mayfield, C. I., and Inniss, W. E., 1983, Aerobic acetylene utilization by stream sediment and isolated bacteria, Curr. Microbiol 8:165–168.

    Article  CAS  Google Scholar 

  • Tate III, R. L., 1977, Nitrification in histosols: A potential role for the heterotrophic nitrifier, Appl Environ. Microbiol 33:911–914.

    PubMed  CAS  Google Scholar 

  • Taylor, B. F., 1983, Assays of microbial nitrogen transformations, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 809–837, Academic Press, New York.

    Google Scholar 

  • Taylor, B. F., and Oremland, R. S., 1979, Depletion of adenosine triphosphate in Desulfov- ibrio by oxyanions of group VI elements, Curr. Microbiol 3:101–103.

    Article  CAS  Google Scholar 

  • Taylor, C. D., and Wolfe, R. S., 1974, Structure and methylation of coenzyme M (HSCH2CH2SO3), J. Biol Chem. 249:4879–4885.

    CAS  Google Scholar 

  • Taylor, C. D., McBride, B. C., Wolfe, R. S., and Bryant, M. P., 1974, Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium, J. Bacteriol 120:974–975.

    PubMed  CAS  Google Scholar 

  • Taylor, G. T., and Pace, M. L., 1987, Validity of eucaryote inhibitors for assessing production and grazing mortality of marine bacterioplankton, Appl Environ. Microbiol 53:119–128.

    PubMed  CAS  Google Scholar 

  • Thomas, K. C., and Spencer, M., 1978, Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air. Can. J. Microbiol 24:637–642.

    Article  PubMed  CAS  Google Scholar 

  • Tonge, G. M., Harrison, D. E. F., Knowles, C. J., and Higgins, I. J., 1975, Properties and partial purification of the methane-oxidizing enzyme system from Methylosinus tri- chosporium, FEBS Lett. 58:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Tonge, G. M., Drozd, J. W., and Higgins, I. J., 1977, Energy coupling in Methylosinus tri- chosporium, J. Gen. Microbiol 99:229–232.

    CAS  Google Scholar 

  • Tonsager, S. R., and Averill, B. A., 1980, Difficulties in the analysis of acid-labile sulfide in Mo-S and Mo-Fe-S systems. Anal Biochem. 102:13–15.

    Article  PubMed  CAS  Google Scholar 

  • Topp, E., and Knowles, R., 1982, Nitrapyrin inhibits the obligate methylotrophsMethylosinus trichosporium and Methylococcus capsulatus, FEMS Microbiol Lett. 14:47–49.

    Article  CAS  Google Scholar 

  • Topp, E., and Knowles, R., 1984, Effects of nitrapyrin [2-chloro-6-(trichloromethyl) pyridine] on the obligate methanotroph Methylosinus trichosporium OB3b, Appl Environ. Microbiol 47:258–262.

    PubMed  CAS  Google Scholar 

  • Trebst, A., 1980, Inhibitors in electron flow: Tools for the functional and structural localization of carriers and energy conservation sites, in: Methods in Enzymology, (A. SanPietro, ed), pp. 765, Academic Press, New York.

    Google Scholar 

  • Trimble, R. B., and Ehrlich, H. L., 1968, Bacteriology of manganese nodules. III. Reduction of Mn02 by two strains of nodule bacteria, Appl Microbiol 16:695–702.

    PubMed  CAS  Google Scholar 

  • Tromballa, H. W., and Broda, E., 1971, Das verhalten von Chlorella fusca gegenüber Perchlorat und chlorat, Arch. Microbiol. 78:214–223.

    CAS  Google Scholar 

  • Truper, H. G., and Fischer, U., 1982, Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis, Phil Trans. R. Soc. Lond. B 298:529–542.

    Article  Google Scholar 

  • Turpin, D. H., Edie, S. A., and Canvin, D. T., 1984, In vivo nitrogenase regulation by ammonium and methlyamine and the effect of MSX on ammonium transport in Anabaena flos-aquae. Plant Physiol 74:701–704.

    Article  PubMed  CAS  Google Scholar 

  • Tuttle, J. H., and Dugan, P. R., 1976, Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds, Can. J. Microbiol 22:719–730.

    Article  PubMed  CAS  Google Scholar 

  • Tuttle, J. H., and Jannasch, H. W., 1977, Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters, Microb. Ecol 4:9–25.

    Article  CAS  Google Scholar 

  • Umezawa, H., 1982, Low-molecular-weight enzyme inhibitors of microbial origin,Annu. Rev. Microbiol 36:75–99.

    Article  PubMed  CAS  Google Scholar 

  • Van Berkum, P., and Sloger, C., 1979, Immediate acetylene reduction by excised grass roots not previously preincubated at low oxygen tensions. Plant Physiol 64:739–743.

    Article  PubMed  Google Scholar 

  • Van Berkum, P., and Sloger, C., 1981, Comparing time course profiles of immediate acetylene reduction by grasses and legumes, Appl Environ. Microbiol 41:184–189.

    PubMed  Google Scholar 

  • Van der Meijden, P., Heythuysen, H. J., Sliepenbeek, H. T., Houwen, F. P., van der Drift, C., and Vogels, G. D., 1983, Activation and inactivation of methanol: 2-Mercapto- ethanesulfonic acid methyltransferase from Methanosarcina barkeri, J. Bacteriol 153:6–11.

    PubMed  Google Scholar 

  • Vanderaieulen, J. H., Davis, N. D., and Muscatine, L., 1972, The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates, Mar. Biol 16:185–191.

    Google Scholar 

  • Van Nevel, C. J., and Demeyer, D. L, 1977, Effect of monensin on rumen metabolism in vitro, AppL Environ. Microbiol. 34:251–257.

    PubMed  Google Scholar 

  • Van Raalte, C. D., and Patriquin, D. G., 1979, Use of the "acetylene blockage" technique for assaying denitrification in a salt marsh. Mar. Biol. 52:315–320.

    Article  Google Scholar 

  • van Vliet-Smits, M., Harder, W., and van Dijken, J. P., 1981, Some properties of the amine oxidase of the facultative methylotroph Arthrobacter P1, FEMS Microbiol. Lett. 11:31–35.

    Article  Google Scholar 

  • Vincent, W. F., and Downes, M. T., 1981, Nitrate accumulation in aerobic hypolimnia: Relative importance of benthic and planktonic nitrifiers in an oligotrophic lake, Appl. Environ. Microbiol. 42:565–573.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., Oremland, R. S., and Kvenvolden, K. A., 1982, Low temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.), Chem. Geol. 37:289–298.

    Article  CAS  Google Scholar 

  • Wake, L. V., Christopher, R. K., Rickard, P. A. D., Andersen, J. E., and Ralph, B. J., 1977, A thermodynamic assessment of possible substrates for sulfate/reducing bacteria,Aust. J.Biol.Sci 30:115–127.

    Google Scholar 

  • Walter, H. M., Kenney, D. R., and Fillery, I. R., 1979, Inhibition of nitrification by acetylene, Soil Sei. Am. J. 43:195–196.

    Article  CAS  Google Scholar 

  • Ware, D. A., and Postgate, J. R., 1971, Physiological and chemical properties of a reductant- activated inorganic pyrophosphatase fromDesulfovibrio desulfuricans, J. Gen. Microbiol, 67:145–160.

    PubMed  CAS  Google Scholar 

  • Watanabe, I., and de Guzman, M. R., 1980, Effect of nitrate on acetylene disappearance from anaerobic soil. Soil Biol. Biochem, 12:193–194.

    Article  CAS  Google Scholar 

  • Weathers, P. J., 1984, N2O evolution by green algae, Appl. Environ. Microbiol. 48:1251–1253.

    PubMed  CAS  Google Scholar 

  • Webb, K. L., and Wiebe, W. J., 1975, Nitrification on a coral reef, Can. J. Microbiol. 21:1427–1431

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, P. A., 1980, Use of methylammonium as an ammonium analogue in nitrogen transport and assimilation studies withCyclotella cryptica (Bascillariophyceae), J. Phy- col. 16:328–334.

    CAS  Google Scholar 

  • Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems,Limnol. Oceanogr, 31:998–1009.

    Article  CAS  Google Scholar 

  • Wildenauer, F. X., Blotevogel, K. H., and Winter, J., 1984, Effect of monensin and 2-bro- methanesulfonic acid on fatty acid metabolism and methane production from cattle manure, Microbiol. Biotechnol 19:125–130.

    Article  CAS  Google Scholar 

  • Wilson, L. G., and Bandurski, R. S., 1958, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975–981.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and Ward, D. M., 1983, Substrates for sulfate reduction and methane production in intertidal sediments, Appl. Environ. Microbiol. 45:193–199.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33:312–318.

    PubMed  CAS  Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl Environ. Microbiol 37:244–253.

    PubMed  CAS  Google Scholar 

  • Witty, J. F., 1979, Acetylene reduction assay can overestimate nitrogen/fixation in soil.Soil Biol Biochem. 11:209–210.

    Article  CAS  Google Scholar 

  • Wolin, M. J., and Miller, T. L., 1980, Molybdate and sulfide inhibit H2 and increase formate production from glucose byRuminococcus albus, Arch. Microbiol 124:137–142.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, E. A., Wolfe, R. S. and Wilin, M. J., 1964, Viologen dye inhibition of methane formation of Methanobacillus omelianskii, J. BacterioL 87:993–998.

    PubMed  CAS  Google Scholar 

  • Wood, J. M., Kennedy, F. S., and Wolfe, R. S., 1968a, The reaction of multihalogenated hydrocarbons with free and bound vitamin B12,Biochemistry 7:1707–1713.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. M., Kennedy, F. S., and Rosen, C. G., 1968b, Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 220:173–174.

    Article  PubMed  CAS  Google Scholar 

  • Wood, L. B., Hurley, B. J. E., and Matthews, P. J., 1981, Some observation on the biochemistry and inhibition of nitrification. Water Res. 15:543–551.

    Article  CAS  Google Scholar 

  • Wright, R. T., and Coffin, R. B., 1983, Flanktonic bacteria in estuaries and coastal waters of northern Massachusetts: Spatial and temporal distributions, Mar. Ecol. Prog. Ser. 11:205–216.

    Article  Google Scholar 

  • Yamazaki, S., 1982, A selenium-containing hydrogenase from Methanococcus vannielii, J. Biol. Chem. 257:7926–7929.

    PubMed  CAS  Google Scholar 

  • Yang, S. F., 1974, The biochemistry of ethylene: Biogenesis and metabolism, Ree. Adv. Phyto. chem. 7:131–164.

    CAS  Google Scholar 

  • Yeomans, J., and Beauchamp, E. G., 1978, Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene. Soil Biol. Biochem. 10:517–519.

    Article  CAS  Google Scholar 

  • Yetka, J. E., and Wiebe, W. J., 1974, Ecological application of antibiotics as respiratory inhibitors of bacterial populations, Appl. Microbiol. 28:1033–1039.

    PubMed  CAS  Google Scholar 

  • Yoch, D. C., and Gotto, J. W., 1982, Effect of light intensity and inhibitors of nitrogen assimilation on inhibition of nitrogenase activity in Rhodopseudomonas rubrum and Anabaena sp.,J. Bacteriol 151:800–806.

    PubMed  CAS  Google Scholar 

  • Yoch, D. C., and Whiting, G. J., 1986, Evidence for NH^ switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alter- niflora, Appl. Environ. Microbiol. 51:143–149.

    PubMed  CAS  Google Scholar 

  • Yokota, A., and Canvin, D. T., 1985, Ribulose biphosphate carboxylase/oxygenase content determined with [14C] carboxypentitol biphosphate in plants and algae, Plant Physiol. 77:735–739.

    Article  Google Scholar 

  • Yoshinari, T., 1984, Nitrite and nitrous oxide production by Methylosinus trichosporium. Can. J. Microbiol. 31:139–144.

    Article  Google Scholar 

  • Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun. 69:705–710.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari, T, Hynes, R., and Knowles, R., 1977, Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil, Soil Biol. Biochem. 9:177–183.

    Article  CAS  Google Scholar 

  • Young, J. C., 1983, Comparison of 3 forms of 2-chloro-6-(trichloromethyl) pyridine as a nitrification inhibitor in BOD tests, J. Water Pollut. Control Fed. 55:415–416.

    CAS  Google Scholar 

  • Zehnder, A. J. B., and Brock, T. D., 1979, Methane formation and methane oxidation by methanogenic bacteria, J. Bacteriol 137:420–432.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and Brock, T. D., 1980, Anaerobic methane oxidation: Occurrence and ecology, Appl Environ. Microbiol 39:194–204.

    PubMed  CAS  Google Scholar 

  • Zehr, J. P., and Oremland, R. S., 1987, Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol 53:1365–1369.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H, and Brock, T. D, 1978, Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaerobic lake sediments, Nature 273 :226–228

    Article  CAS  Google Scholar 

  • Zinder, S. H., Anguish, T., and Cardwell, S. C., 1984, Selective inhibition by 2-bromo- ethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor, Appl Environ. Microbiol, 47:1343–1345.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., 1947, Microbial transformations of molecular hydrogen in marine sediments, with particular reference to petroleum, Am. Assoc. Petrol. GeoL Bull 31:1709–1751.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Oremland, R.S., Capone, D.G. (1988). Use of “Specific” Inhibitors in Biogeochemistry and Microbial Ecology. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics