Skip to main content

Biogeochemistry and Ecophysiology of Atmospheric CO and H2

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

Hydrogen and carbon monoxide are just trace constituents in our environment, but their cycles are nevertheless of great importance for life on earth. Two different cycles may be distinguished, the cycling between the biosphere and the atmosphere (atmospheric cycle) and the cycling and turnover within individual ecosystems of the biosphere (biospheric cycle). For H2, it is the biospheric cycle in anoxic environments that is of special interest, since H2 is an important intermediate in the decomposition of organic matter and functions as a regulator for the whole mineralization process. The role of H2 in these environments has been described and discussed in a number of reviews on methane production and sulfate reduction in anoxic ecosystems (Zehnder, 1978; Nedwell, 1984; Zeikus, 1983) and thus will not be the subject of this review. The biospheric cyles of CO and H2 in anoxic environments are of relatively little importance for the atmospheric budgets of CO and H2 (see Section 6). However, they are of great importance for the budget of atmospheric CH4 (Seiler, 1984), which is an indirect source for atmospheric CO and H2 (see Section 7). Biospheric cycles of CO and H2 are also operative in oxic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. W. W., Mortenson, L. E., and Chen, J. S., 1981, Hydrogenase, Biochim. Biophys. Acta 594:105–176.

    Google Scholar 

  • Anderson, J. P. E., and Domsch, K. H., 1973, Quantification of bacterial and fungal contributions to soil respiration, Arch. Microbiol. 93:113–127.

    CAS  Google Scholar 

  • Aragno, M., and Schlegel, H. G., 1981, The hydrogen-oxidizing bacteria, in: The Prokary- otes. A Handbook on Habitats, Isolation and Identification of Bacteria (M. P. Starr, H. Stolp, H. G. Trüper, A. Ballows, and H. G. Schlegel, eds.). Vol. 1, pp. 865–893, Springer, Berlin.

    Google Scholar 

  • Atlas, R. M., and Hartha, R., 1981, Microbial Ecology: Fundamentals and Applications, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Bartholomew, G. W., and Alexander, M., 1979, Microbial metabolism of carbon monoxide in culture and in soil, Appl. Environ. Microbiol. 37:932–937.

    PubMed  CAS  Google Scholar 

  • Bartholomew, G. W., and Alexander, M., 1981, Soil as a sink for atmospheric carbon monoxide, Science 212:1389–1391.

    CAS  Google Scholar 

  • Bartholomew, G. W., and Alexander, M., 1982, Microorganisms responsible for the oxidation of carbon monoxide in soil. Environ. Sei. Technol. 16:300–301.

    CAS  Google Scholar 

  • Bauer, K., Seiler, W., and Giehl, H., 1979, CO-Produktion höherer Pflanzen an natüriichen Standorten. Z. Pflanzenphysiol 94:219–230.

    CAS  Google Scholar 

  • Bauer, K., Conrad, R., and Seiler, W., 1980, Photooxidative production of carbon monoxide by phototrophic microorganisms, Biochim. Biophys. Acta 589:46–55.

    PubMed  CAS  Google Scholar 

  • Baxter, R. M., and Carey, J. H., 1983, Evidence for photochemical generation of superoxide ion in humic waters, Nature 306:575–576.

    CAS  Google Scholar 

  • Bell, R. G., 1969, Studies on the decomposition of organic matter in flooded soils. Soil Biol. Biochem. 1:105–116.

    CAS  Google Scholar 

  • Bell, J. M., Williams, E., and Colby, J., 1985, Carbon monoxide oxidoreductases from thermophilic carboxydobacteria, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), pp. 153–159, Academic Press, London.

    Google Scholar 

  • Benson, D. R., Arp, D. J., and Burris, R. H., 1980, Hydrogenase in actinorhizal root nodules and root nodule homogenates, J. Bacteriol 142:138–144.

    PubMed  CAS  Google Scholar 

  • Bidwell, R. G. S., and Bebee, G. P., 1974, Carbon monoxide fixation by plants.Can. J. Bot 52:1841–1847.

    CAS  Google Scholar 

  • Bidwell, R. G. S., and Fraser, D. E., 1972, Carbon monoxide uptake and metabolism by leaves. Can. J. Bot. 50:1435–1439.

    CAS  Google Scholar 

  • Bonjour, F., and Aragno, M., 1984,Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing spore former from a geother- mal area, Arch. Microbiol. 139:397–401.

    CAS  Google Scholar 

  • Bothe, H., Neuer, G., Kalbe, I., and Eisbrenner, G., 1980, Electron donors and hydrogenase in nitrogen-fixing microorganisms, in: Nitrogen Fixation (W. D. P. Stewart and J. R. Gallon, eds.), pp. 83–112, Academic Press, London.

    Google Scholar 

  • Bowien, B., and Schlegel, H. G., 1981, Physiology and biochemistry of aerobic hydrogen- oxidizing bacteria. Annu. Rev. Microbiol. 35:405–452.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., 1982, Intestinal microbiota of termites and other xylophagous insects, Annu, Rev. Microbiol. 36:323–343.

    CAS  Google Scholar 

  • Broecker, W. S., and Peng, T. H., 1974, Gas exchange rates between air and sea, Tellus 26:21–35.

    CAS  Google Scholar 

  • Bullister, J. L., Guinasso, Jr., N. L., and Schink, D. R., 1982, Dissolved hydrogen, carbon monoxide, and methane at the CEPEX site, J. Geophys. Res. 87:2022–2034.

    CAS  Google Scholar 

  • Burke, Jr., R. A., Reid, D. F., Brooks, J. M., and Lavoie, D. M., 1983, Upper water column methane geochemistry in the eastern tropical North Pacific, Limnol. Oceanogr. 28:19–32.

    CAS  Google Scholar 

  • Burns, R. G., 1978, Enzyme activity in soil: some theoretical and practical considerations, in: Soil Enzymes (R. G. Bums, ed.), pp. 295–340, Academic Press, London.

    Google Scholar 

  • Burns, R. G., 1982, Enzyme activity in soil: Location and a possible role in microbial ecology, Soil Biol. Biochem. 14: 423–427.

    CAS  Google Scholar 

  • Bums, R. G., and Hardy, R. W. F., 1975, Nitrogen Fixation in Bacteria and Higher Plants, Springer, New York.

    Google Scholar 

  • Bzdega, T., Karwowska, R., Zuchmantowicz, H., Pawlak, M., Kleczkowski, L., and Nalbor- czyk, E., 1981, Absorption of carbon monoxide by higher plants. Polish Ecol. Stud. 7:387–399.

    Google Scholar 

  • Calvert, F., Cloez, S., and Boussingault, M., 1864, Über die Bildung von Kohlenoxyd bei der Einwirkung von Sauerstoff auf pyrogallussaures Kali, Annl. Chem. Pharmazie (Leipzig) 130:248–249.

    Google Scholar 

  • Chappelle, E. W., 1962, Carbon monoxide oxidation by algae, Biochim. Biophys. Acta 62:45–62.

    PubMed  CAS  Google Scholar 

  • Choudhry, G. G., 1984, Humic substances. Structural aspects, and photophysical, photochemical and free radical characteristics, in: The Handbook of Environmental Chemistry (O. Hutzinger, ed.), Vol. IV, pp. 1–24, Springer, Berlin.

    Google Scholar 

  • Conrad, R., 1984, Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, CH4), in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 461–467, American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Conrad, R., and Seiler, W., 1979a, Field measurements of hydrogen evolution by nitrogen- fixing legumes.Soil Biol. Biochem. 11:689–690.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1979b, The role of hydrogen bacteria during the decomposition of hydrogen by soil, FEMS Microbiol. Lett. 6: 143–145.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1980a, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res. 85:5493–5498.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1980b, Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil, Appl Environ. Microbiol. 40:437–445.

    PubMed  CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1980c, Photooxidative production and microbial consumption of carbon monoxide in seawater,FEMS Microbiol. Lett. 9:61–64.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1981, Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes.Soil Biol Biochem. 13:43–49.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1982a, Arid soils as a source of atmospheric carbon monoxide, Geophys. Res. Lett. 9:1353–1356.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1982b, Utilization of traces of carbon monoxide by aerobic oli- gotrophic microorganisms in ocean, lake and soil. Arch. Microbiol. 132:41–46.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1985a, Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere. Field studies in subtropical regions,J. Geophys. Res. 90:5699–6709.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1985b, Destruction and production rates of carbon monoxide in arid soils under field conditions, in: Planetary Ecology (D. E. Caldwell, J. A. Brierley, and C. L. Brieriey, eds.). pp. 112–119, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Conrad, R., and Seiler, W., 1985c, Characteristics of abiological CO formation from soil organic matter, humic acids and phenolic compounds, Environ. Sei. Technol. 19:1165–1169.

    CAS  Google Scholar 

  • Conrad, R., and Seiler, W., 1986a, Influence of the surface layer on the flux of non-conser- vative trace gases (H2, CO, CH4, N2O) across the ocean-atmosphere boundary layer, J. Atmos. Chem., in press.

    Google Scholar 

  • Conrad, R., and Seiler, W., 1986b, Exchange of CO and H2 between ocean and atmosphere, in: The Role of Air-Sea Exchange in Geochemical Cycling (P. Buat-Menard, ed.), pp. 269–282, Reidel, Dordrecht.

    Google Scholar 

  • Conrad R., and Thauer, R. K., 1983, Carbon monoxide production by Methanobacterium thermoautotrophicum, FEMS Microbiol. Lett. 20:229–232.

    CAS  Google Scholar 

  • Conrad, R., Meyer, O., and Seiler, W., 1981, Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil, Appl. Environ. Microbiol. 42:211–215.

    PubMed  CAS  Google Scholar 

  • Conrad, R., Seiler, W., Bunse, G., and Giehl, H., 1982, Carbon monoxide in seawater (Atlantic Ocean), J. Geophys. Res. 87:8839–8852.

    CAS  Google Scholar 

  • Conrad, R., Aragno, M., and Seiler, W., 1983a, Production and consumption of hydrogen in a eutrophic lake, Appl. Environ. Microbiol. 45:502–510.

    PubMed  CAS  Google Scholar 

  • Conrad, R., Aragno, M., and Seiler, W., 1983b, Production and consumption of carbon monoxide in a eutrophic lake, Limnol. Oceanogr. 28:42–49.

    CAS  Google Scholar 

  • Conrad R., Aragno, M., and Seiler, W., 1983c, The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen, FEMS Microbiol. Lett. 18:207–210.

    CAS  Google Scholar 

  • Conrad, R., Weber, M., and Seiler, W., 1983d, Kinetics and electron transport of soil hydro- genases catalyzing the oxidation of atmospheric hydrogen, Soil Biol. Biochem. 15:167–173.

    CAS  Google Scholar 

  • Conrad, R., Phelps, T. J., and Zeikus, J. G., 1985a, Gas metabolism evidence in support of juxtapositioning between hydrogen producing and methanogenic bacteria in sewage sludge and lake sediments,Appl. Environ. Microbiol. 50:595–601.

    PubMed  CAS  Google Scholar 

  • Conrad, R., Bonjour, F., and Aragno, M., 1985b, Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water, FEMS Microbiol. Lett. 29:201–205.

    CAS  Google Scholar 

  • Crozier, T. E., and Yamamoto, S., 1974, Solubility of hydrogen in water, seawater, and NaCl solutions, J. Chem. Eng. Data, 19:242–244.

    CAS  Google Scholar 

  • Crutzen, P. J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Planet. Sei. 7:443–472.

    CAS  Google Scholar 

  • Crutzen, P. J., 1982, The global distribution of hydroxyl, in: Atmospheric Chemisty (E. D. Goldberg, ed.), pp. 313–328, Springer, Berlin.

    Google Scholar 

  • Crutzen, P. J., 1983, Atmospheric interactions. Homogeneous gas reactions of C, N, and S containing compounds, in: The Major Biogeochemical Cycles and Their Interactions (B. Bolin and R. B. Cook, eds.), pp. 65–114, Wiley, Chichester.

    Google Scholar 

  • Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during dry season,J. Atmos. Chem. 2:233–256.

    CAS  Google Scholar 

  • Cypionka, H., Meyer, O., and Schlegel, H. G., 1980, Physiological characteristics of various species of strains of carboxydobacteria, Arch. Microbiol. 127:301–307.

    CAS  Google Scholar 

  • Dahm, C. N., Baross, J. A., Ward, A. K., Lilley, M. D., and Sedell, J. R., 1983, Initial effects of the Mount St. Helens emption on nitrogen cycle and related chemical processes in Ryan Lake, Appl. Environ. Microbiol. 45:1633–1645.

    PubMed  CAS  Google Scholar 

  • Degens, E. T., Reuter, J. H., and Shaw, K. N. F., 1964, Biochemical compounds in offshore California sediments and sea waters,Geochim. Cosmochim. Acta 28:45–66.

    CAS  Google Scholar 

  • Dickert, G., and Ritter, M., 1983, Carbon monoxide fixation into carboxyl group of acetate during growth ofAcetobacterium woodii on H2 and CO2, FEMS Microbiol. Lett. 17: 299–302.

    Google Scholar 

  • Dickert, G., Hansch, M., and Conrad, R., 1984, Acetate synthesis from CO2 in acetogenic bacteria: Is carbon monoxide an intermediate?. Arch. Microbiol 138:224–228.

    Google Scholar 

  • Dixon, O. D., 1972, Hydrogenase in legume root nodule bacteroids: Occurrence and Properties, Arch. Microbiol. 107:193–201.

    Google Scholar 

  • Douglas, E., 1967, Carbon monoxide solubilities in sea water, J. Phys. Chem. 71:1931–1933.

    PubMed  CAS  Google Scholar 

  • Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautereels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., and Wallace, G. T., 1983, Organic material in the global troposphere. Rev. Geophys. Space Phys. 21:921–952.

    CAS  Google Scholar 

  • Duggin, J. A., and Cataldo, D. A., 1985, The rapid oxidation of atmospheric CO to CO2 by soils. Soil Biol Biochem. 17:469–474.

    CAS  Google Scholar 

  • Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol 129:1269–1281.

    CAS  Google Scholar 

  • Ehhalt, D. H., 1973, On the uptake of tritium by soil water and groundwater,Water Resources Res. 9:1073–1074.

    CAS  Google Scholar 

  • Ehrhardt, M., 1984, Marine gelbstoff, in: The Handbook of Environmental Chemistry (O. Hutzinger, ed.). Vol. IC, pp. 63–77, Springer, Berlin.

    Google Scholar 

  • Eikmanns, B., Fuchs, G., and Thauer, R. K., 1985, Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum, Eur. J. Biochem. 146:149–154.

    PubMed  CAS  Google Scholar 

  • Engel, R. R., Matsen, J. M., Chapman, S. S., and Schwartz, S., 1972, Carbon monoxide production from heme compounds by bacteria, J. Bacteriol 112:1310–1315.

    PubMed  CAS  Google Scholar 

  • Engel, R. R., Modler, S., Matsen, J. M., and Petryka, Z. J., 1973, Carbon monoxide production from hydroxocobalamin by bacteria, Biochim. Biophys. Acta 313:150–155.

    PubMed  CAS  Google Scholar 

  • Evans, H. J., Ruiz-Argüeso, T., Jennings, N., and Hanus, J., 1977, Energy coupling efficiency of symbiotic nitrogen fixation, in: Genetic Engineering for Nitrogen Fixation (A. Hollander, ed.), pp. 333–354, Plenum Press, New York.

    Google Scholar 

  • Fallon, R. D., 1982a, Influences of pH, temperature, and moisture on gaseous tritium uptake in surface soils, Appl Environ. Microbiol 44: 171–178.

    PubMed  CAS  Google Scholar 

  • Fallon, R. D., 1982b, Molecular tritium uptake in southeastern U. S. soils,Soil Biol Biochem. 14:553–556.

    CAS  Google Scholar 

  • Farquhar, G. J., and Rovers, F. A., 1973, Gas production during refuse decomposition. Water Air Soil Pollul 2:483–495.

    CAS  Google Scholar 

  • Ferenci, T., Ström, T., and Quayle, J. R., 1975, Oxidation of carbon monoxide and methane by Pseudomonas methanica, J. Gen. Microbiol. 91:79–91.

    PubMed  CAS  Google Scholar 

  • Fischer, K., and Lüttge, U., 1978, Light-dependent net production of carbon monoxide by plants. Nature 275:740–741.

    CAS  Google Scholar 

  • Fischer, K., and Lüttge, U., 1979, Lichtabhängige CO-Bildung grüner Pflanzen und ihre Bedeutung fur den CO-Haushah der Atmosphäre, Flora. 168:121–137.

    CAS  Google Scholar 

  • Fishman, J., and Seiler, W., 1983, Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget, J. Geophys. Res. 88:3662–3670.

    CAS  Google Scholar 

  • Gallon, J. R., 1981, The oxygen sensitivity of nitrogenase: A problem for biochemists and microorganisms, TIBS 6:19–23.

    CAS  Google Scholar 

  • Glauser, M., Aragno, M., and Gandolla, M., 1988. Anaerobic digestion of urban wastes: Sewage and organic fraction of garbage, in: Bioenvironmental Systems (Vol. 3, D. Wise, ed.), CRC Press, Boca Raton, Florida, in press.

    Google Scholar 

  • Gohre, K., and Miller, G. C., 1983, Singlet oxygen generation on soil surfaces. J. Agric. Food Chem. 31:1104–1108.

    CAS  Google Scholar 

  • Goto, E., Kodama, T., and Minoda, Y., 1978, Growth and taxonomy of thermophilic hydrogen bacteria, Agric. Biol. Chem. 42:1305–1308.

    Google Scholar 

  • Gottschal, J. C., and Kuenen, J. G., 1980, Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat, Arch. Microbiol. 126:33–42.

    CAS  Google Scholar 

  • Gunter, B. D., and Musgrave, B. C., 1966, Gas chromatographic measurements of hydro- thermal emanations at Yellowstone National Park, Geochim. Cosmochim. Acta 30:1175–1189.

    CAS  Google Scholar 

  • Haag, W. R., Hoigne, J., Gassman, E., and Braun, A. M., 1984, Singlet oxygen in surface waters. 2. Quantum yields of its production by some natural humic materials as a function of wavelength, Chemosphere 13:641–650.

    CAS  Google Scholar 

  • Hallenbeck, P. C., and Benemann, J. R., 1979, Hydrogen from algae. Top. Photosynth. 3:331–364.

    CAS  Google Scholar 

  • Hampson, R. F., 1980, Chemical Kinetic and Photochemical Data Sheets for Atmospheric Research, Report FAA-EE-80–17, National Bureau of Standards, Washington, D. C.

    Google Scholar 

  • Hanson, R. S., 1980, Ecology and diversity of methylotrophic organisms.Adv. Appl. Microbiol. 26:3–39.

    CAS  Google Scholar 

  • Harrison, W. H., and Aiyer, P. A. S., 1913, The gases of swamp soils, Mem. Dep. Agr. Ind. 3:65–104.

    Google Scholar 

  • Hegeman, G., 1980, Oxidation of carbon monoxide by bacteria, TIBS 5:256–259.

    CAS  Google Scholar 

  • Heichel, G. H., 1973, Removal of carbon monoxide by field and forest soils,J. Environ. Qual. 2:419–423.

    CAS  Google Scholar 

  • Heidt, L. R., Krasnec, J. P., Lueb, R. A., Pollock, W. H., Henry, B. E., and Crutzen, P.J., 1980, Latitudinal distribution of CO and CH4 over the Pacific, J. Geophys. Res. 85:7329–7336.

    CAS  Google Scholar 

  • Herr, F. L., 1984, Dissolved hydrogen in Eurasian arctic waters, Tellus 36B:55–66.

    CAS  Google Scholar 

  • Herr, F. L., and Barger, W. R., 1978, Molecular hydrogen in the near surface atmosphere and dissolved in waters of the tropical North Atlantic, J. Geophys. Res. 83:6199–6205.

    CAS  Google Scholar 

  • Herr, F. L., Scranton, M. L, and Barger, W. R., 1981, Dissolved hydrogen in the Norwegian Sea: Mesoscale surface variability and deep water distribution, Deep-Sea Res. 28:1001–1016.

    CAS  Google Scholar 

  • Herr, F. L., Frank, E. C., Leone, G. M., and Kennicutt, M. C., 1984, Diurnal variability ofdissolved molecular hydrogen in the tropical South Atlantic Ocean, Deep-Sea Res. 31:13–20.

    CAS  Google Scholar 

  • Holzapfel-Pschom, A., Conrad, R., and Seiler, W., 1986, Effects of vegetation on the emission of methane by submerged paddy soil, Plant Soil 92:223–233.

    Google Scholar 

  • Hu, S. I., Drake, H. L, and Wood, H. G., 1982, Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum, J. Bacteriol. 149:440–448.

    PubMed  CAS  Google Scholar 

  • Ingersoll, R. B., Inman, R. E., and Fisher, W. R., 1974, Soil’s potential as a sink for atmospheric carbon monoxide, Tellus 26:151–159.

    CAS  Google Scholar 

  • Inman, R. E., and Ingersoll, R. B., 1971, Note on the uptake of carbon monoxide by soil fungi, J. Air Pollut. Control Assoc. 21:646–647.

    CAS  Google Scholar 

  • Inman, R. E., Ingersoll, R. B., and Levy, E. A., 1971, Soil: A natural sink for carbon monoxide, Science 172:1229–1231.

    PubMed  CAS  Google Scholar 

  • Jansen, K., Thauer, R. K., Widdel, F., and Fuchs, G., 1984, Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch. Microbiol. 138:257–262.

    CAS  Google Scholar 

  • Jenkinson, D. S., and Ladd, J. N., 1981, Microbial biomass in soil: Measurement and turnover, in: Soil Biochemistry (E. A. Paul and J. N. Ladd, eds.). Vol. 5, pp. 415–471, Marcel Dekker, New York.

    Google Scholar 

  • Jones, R. D., and Morita, R. Y., 1983, Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can. J. Microbiol 29:1545–1551.

    CAS  Google Scholar 

  • Jones, R. D., Morita, R. Y., and Griffiths, R. P., 1984, Method for estimating in-situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation. Mar. Ecol. Prog. Ser. 17:259–269.

    CAS  Google Scholar 

  • Jorgensen, B. B., 1977, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41:7–17.

    Google Scholar 

  • Junge, C., Seiler, W., Bock, R., Greese, K. D., and Radier, F., 1971, Über die CO-Produktion von Mikroorganismen, Naturwissenschaften 58: 362–363.

    PubMed  CAS  Google Scholar 

  • Junge, C., Seiler, W., Schmidt, U., Bock, R., Greese, K. D., Radier, F., and Rüger, H. J., 1972, Kohlenoxid- und Wasserstoff-Produktion mariner Mikroorganismen im Nährmedium mit synthetischem Seewasser, Naturwissenschaften 59:514–515.

    PubMed  CAS  Google Scholar 

  • Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y., 1984, Hydrogenobacter thermo- philus gen. nov. sp. nov., an extremely thermophilic, aerobic hydrogen-oxidizing bacterium, Int. J. Syst. Bacteriol. 34:5–10.

    CAS  Google Scholar 

  • Kerby, R., Niemczura, W., and Zeikus, J. G., 1983, Single-carbon catabolism in acetogens: Analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophi- cum by fermentation and ’14C nuclear magnetic resonance measurements,J. Bacteriol. 155:1208–1218.

    PubMed  CAS  Google Scholar 

  • Khalil, M. A. K., and Rasmussen, R. A., 1983, Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophys. Res. 88:5131–5144.

    CAS  Google Scholar 

  • Khalil, M. A. K., and Rasmussen, R. A., 1984, Carbon monoxide in the earth’s atmosphere: Increasing trend. Science 224:54–56.

    PubMed  CAS  Google Scholar 

  • Kiessling, M., and Meyer, O., 1982, Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava, FEMS Microbiol. Lett. 13:333–338.

    CAS  Google Scholar 

  • Krinsky, N. J., 1978, Non-photosynthetic functions of carotenoids, Phil. Trans. R. Soc. Lond 284B:581–590.

    Google Scholar 

  • Kristjansson, J. K., Ingason, A., and Alfredsson, G. A., 1985, Isolation of thermophilic obli- gately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophi- lus, from Icelandic hot springs.Arch. Microbiol. 140:321–325.

    CAS  Google Scholar 

  • Krüger, B., and Meyer, O., 1984, Thermophilic Bacilli growing with carbon monoxide. Arch. Microbiol. 139:402–408.

    Google Scholar 

  • Kryukov, V. R., Saveleva, N. D., and Pusheva, M. A., 1983, Calderobacterium hydrogeno- philum nov. gen., no v. sp., an extreme thermophilic hydrogen bacterium, and its hydro- genase activity, Mikrobiologija 52:781–788.

    CAS  Google Scholar 

  • Krzycki, J. A., Wolkin, R. H., and Zeikus, J. G., 1982, Comparison of unitrophic and mix- otrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri, J. Bacteriol. 149:247–254.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S. I., 1959,Die Rolle der Mikroorganismen im Stoffkreislauf der Seen, VEB Deutscher Verlag für Wissenschaften, Berlin.

    Google Scholar 

  • La Favre, J. S., and Focht, D. D., 1983, Conservation in soil of Hj liberated from N2 fixation by Hup" nodules, Appl. Environ. Microbiol 46:304–311.

    PubMed  CAS  Google Scholar 

  • Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue- green algae), Biol. Rev. Camb. Phil. Soc. 56:589–660.

    CAS  Google Scholar 

  • Langdon, S. E., 1917, Carbon monoxide, occurrence free in kelp (Nereocystis luetkeana), J. Am. Chem. Soc. 39:149–156.

    CAS  Google Scholar 

  • Law, A. T., and Button, D. K., 1977, Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium, J. Bacteriol. 129:115–123.

    PubMed  CAS  Google Scholar 

  • Lespinat, P. A., and Berlier, Y. M., 1981, The dependence of hydrogen recycling upon nitro- genase activity in Azospirillum brasilense Sp. 7, FEMS Microbiol Lett. 10:127–132.

    CAS  Google Scholar 

  • Li, Y. H., Chin, Y. H., Zhao, H. Y., Zhang, X. J., and Zhou, P. Z., 1980, Survey of hydrogen evolution by leguminoid rhizobia strains, Wei Sheng Wu Hsueh Pao 20:180–184.

    CAS  Google Scholar 

  • Liebl, K. H., and Seiler, W., 1976, CO and H2 destruction at the soil surface, in: Production and Utilization of Gases (H 2 , CH 4 , CO) (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 215–229, Goltze, Göttingen.

    Google Scholar 

  • Lilley, M. D., Baross, J. A., and Gordon, L. L, 1982a, Dissolved hydrogen and methane in Saanich Inlet, British Columbia. Deep-Sea Res. 29:1471–1484.

    CAS  Google Scholar 

  • Lilley, M. D., De Angelis, M. A., and Gordon, L. L, 1982b, CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature 300:48–49.

    Google Scholar 

  • Lion, L. W., and Leckie, J. O., 1981, The biogeochemistry of the air-sea interface, Annu. Rev. Earth Planet. Scl 9:449–486.

    CAS  Google Scholar 

  • Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface. Nature 247:181-184.

    CAS  Google Scholar 

  • Loewus, M. W., and Delwiche, C. C., 1963, Carbon monoxide production by algae. Plant Physiol 38: 371–374.

    PubMed  CAS  Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C, and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86:7210–7254.

    CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl Environ. Microbiol 43:1373–1379.

    PubMed  CAS  Google Scholar 

  • Lowe, D. C., and Schmidt, U., 1983, Formaldehyde (HCHO) measurements in the nonur- ban atmosphere, J. Geophys. Res. 88:10844–10858.

    CAS  Google Scholar 

  • Lüttge, U., and Fischer, K., 1980, Light-dependent net carbon monoxide-evolution by C3 and C4 plants,Planta 149:59–63.

    Google Scholar 

  • Lupton, F. S., and Marshall, K. C., 1981, Specific adhesion of bacteria to heterocysts of Anabaena sp and its ecological significance, Appl Environ. Microbiol 42:1085–1092.

    PubMed  CAS  Google Scholar 

  • Lupton, F. S., Conrad, R., and Zeikus, J. G., 1984, CO metabolism of Desulfovibrio vulgaris strain Madison: Physiological function in absence and presence of exogenous substrate, FEMS Microbiol Lett. 23: 263–268.

    CAS  Google Scholar 

  • Lyons, C. M., Justin, P., Colby, J., and Williams E., 1984, Isolation, characterization and autotrophic metabolism of a moderately thermophilic carboxydobacterium, Pseudomonas thermocarboxydovorans sp. nov., J. Gen. Microbiol 130:1097–1105.

    Google Scholar 

  • Malik, K. A., and Schlegel, H. G., 1980, Enrichment and isolation of new nitrogen-fixing hydrogen bacteria, FEMS Microbiol. Lett. 8:101–104.

    CAS  Google Scholar 

  • Marenco, A., and Delaunay, J. C., 1980, Experimental evidence of natural sources of CO from measurements in the troposphere,J. Geophys. Res. 85:5599–5613.

    CAS  Google Scholar 

  • Martens, C. S., 1976, Control of methane sediment-water bubble transport by macroin- faunal irrigation in Cape Lookout Bight, North Carolina, Science 192:998–1000.

    PubMed  CAS  Google Scholar 

  • Martens, C. S., and Val Klump, J., 1980, Biogeochemical cycling in an organic-rich coastal marine basin. 1. Methane sediment-water exchange processes, Geochim. Cosmochim. Acta 44:471–490.

    CAS  Google Scholar 

  • McFarlane, J. C., Rogers, R. D., and Bradley, Jr., D. V., 1978, Environmental tritium oxidation in surface soil,Environ. Sei. Technol. 12:590–593.

    CAS  Google Scholar 

  • McGee, J. M., Brown, L. R., and Tischer, R. G., 1967, A high temperature hydrogen oxidizing bacterium—Hydrogenomonas thermophilus n. sp.. Nature 214:715–716.

    PubMed  CAS  Google Scholar 

  • Meyer, O., 1978, Kohlenmonoxidoxidation und -Assimilation durch das aerobe Wasser- stoffbakterium Pseudomonas carboxydovorans, Ph. D. Thesis, Göttingen.

    Google Scholar 

  • Meyer, O., 1985, Metabolism of aerobic carbon monoxide-utilizing bacteria, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), pp. 131–151, Academic Press, London.

    Google Scholar 

  • Meyer, O., and Schlegel, H. G., 1983, Biology of aerobic carbon monoxide-oxidizing bacteria,Annu. Rev. Microbiol. 37:277–310.

    PubMed  CAS  Google Scholar 

  • Miyahara, S., and Takahashi, H., 1971, Biological CO evolution: Carbon monoxide evolution during autoenzymatic oxidation of phenols, J. Biochem. 69:231–233.

    PubMed  CAS  Google Scholar 

  • Molongoski, J. J., and Klug, M. J., 1980, Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biol. 10:507–518.

    CAS  Google Scholar 

  • Moortgat, G., and Warneck, P., 1979, CO and H2 quantum yields in the photodecomposi- tion of formaldehyde in air, J. Chem. Phys. 70:3639–3651.

    CAS  Google Scholar 

  • Nedwell, D. B., 1984, The input and mineralization of organic carbon in anaerobic aquatic sediments, in: Advances in Microbial Ecology, Vol. 7 (K. C. Marshall, ed.), pp. 93–131, Plenum Press, New York.

    Google Scholar 

  • Neitzert, V., and Seiler, W., 1981, Measurement of formaldehyde in clean air,Geophys. Res. Lett. 8:79–82.

    CAS  Google Scholar 

  • Nohrstedt, H. O., 1984, Carbon monoxide as an inhibitor of N2 Case activity (C2H2) in control measurements of endogenous formation of ethylene by forest soils. Soil Biol. Biochem. 16:19–22.

    CAS  Google Scholar 

  • Norkrans, B., 1980, Surface microlayers in aquatic environments, in:Advances in Microbial Ecology, Vol. 4 (M. Alexander, ed.), pp. 51–85, Plenum Press, New York.

    Google Scholar 

  • Nozhevnikova, A. N., and Yurganov, L. N., 1978, Microbial aspects of regulating the carbon monoxide content of the earth’s atmosphere, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 203–244, Plenum Press, New York.

    Google Scholar 

  • Oremland, R. S., 1983, Hydrogen metabolism by decomposing cyanobacterial aggregates in Big Soda Lake, Nevada, Appl. Environ. Microbiol. 45:1519–1525.

    PubMed  CAS  Google Scholar 

  • Paerl, H. W., 1982,In situ hydrogen production and utilization by natural populations of nitrogen-fixing blue-green algae. Can. J. Bot. 60:2542–2546.

    CAS  Google Scholar 

  • Paerl, H. W., 1983, Environmental regulation of hydrogen utilization (tritiated-hydrogen exchange) among natural and laboratory populations of nitrogen and non-nitrogen fixing phytoplankton, Microb. Ecol. 9:79–97.

    CAS  Google Scholar 

  • Pedrosa, F. O., Döbereiner, J., and Yates, M. G., 1980, Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia, J. Gen. Microbiol. 119:547–551.

    CAS  Google Scholar 

  • Pedrosa, F. O., Stephan, M., Döbereiner, J., and Yates, M. G., 1982, Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense, J. Gen. Microbiol. 128:161–166.

    CAS  Google Scholar 

  • Peiser, G. D., Lizada, C. C., and Yang, S. F., 1982, Dark metabolism of carbon monoxide in lettuce leaf disks. Plant Physiol. 70:397–400.

    PubMed  CAS  Google Scholar 

  • Peng, T. H., Broecker, W. S., Mathieu, G. G., and Li, Y. H., 1979, Radon evasion rates in the Atlantic and Pacific Oceans as determined during GEOSECS program, J. Geophys. Res. 84:2471–2486.

    CAS  Google Scholar 

  • Pezacka, E., and Wood, H. G., 1984, The synthesis of acetyl-Co2 by Clostridium thermo- aceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch. Microbiol 137:63–69.

    PubMed  CAS  Google Scholar 

  • Philips, E. J., and Mitsui, A., 1982, Light intensity preference and tolerance of aquatic pho- tosynthetic microorganisms, in: CRC Handbook of Biosolar Resources (A. Mitsui and C. C. Black, eds.) Vol. 1, pp. 257–308, CRC Press, Boca Raton, Horida.

    Google Scholar 

  • Popelier, F., Liessens, J., and Verstraete, W., 1985, Soil Hz-uptake in relation to soil properties and rhizobial Hs-production, Plant Soil 85:85–96.

    CAS  Google Scholar 

  • Radier, F., Greese, K. D., Bock, R., and Seiler, W., 1974, Die Bildung von Spuren von Kohlenmonoxid durchSaccharomyces cerevisiae und andere Mikroorganismen, Arch. Microbiol. 100:243–252.

    Google Scholar 

  • Radmer, R. J., and Kok, B., 1979, Rate-temperature curves as an unambiguous indicator of biological activity in soil,Appl. Environ. Microbiol. 38:224–228.

    PubMed  CAS  Google Scholar 

  • Rasmussen, R. A., and Khalil, M. A. K., 1981, Atmospheric methane (CH4): Trends and seasonal cyles, J. Geophys. Res. 86:9826–9832.

    CAS  Google Scholar 

  • Rasmussen, R. A., and Khalil, M. A. K., 1983, Global production of methane by termites. Nature 301:700–702.

    CAS  Google Scholar 

  • Robinson, E., Clark, D., and Seiler, W., 1984, The latitudinal distribution of carbon monoxide across the Pacific from California to Antarctica, J. Atmos, Chem. 1:137–150.

    CAS  Google Scholar 

  • Robinson, J. A., and Tiedje, J. M., 1982, Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment, Appl. Environ. Microbiol. 44:1374–1384.

    PubMed  CAS  Google Scholar 

  • Robinson, W. O., 1930, Some chemical phases of submerged soil conditions,Soil Sei. 30:197–217.

    CAS  Google Scholar 

  • Robson, R L., and Postgate, J. R., 1980, Oxygen and hydrogen in biological nitrogen fixation, Annu. Rev. Microbiol. 34:183–207.

    PubMed  CAS  Google Scholar 

  • Roelofsen, W., and Akkermans, A. D. L., 1979, Uptake and evolution of hydrogen and reduction of acetylene by root nodules and nodule homogenates of Alnus glutinosa. Plant Soil 52 :57–57.

    Google Scholar 

  • Rudd, J. W. M., and Taylor, C. D., 1980, Methane cycling in aquatic environments.Adv. Aquat. Microbiol. 2:77–150.

    CAS  Google Scholar 

  • Saveleva, N. D., Kryukov, V. R., and Pusheva, M. A., 1982, Obligate thermophilic hydrogen bacteria, Mikrobiologija 51:765–769.

    CAS  Google Scholar 

  • Schink, B., and Zeikus, J. G., 1984, Ecology of aerobic hydrogen-oxidizing bacteria in two freshwater lake ecosystems. Can. J. Microbiol. 30:260–265.

    CAS  Google Scholar 

  • Schink, B., Lupton, F. S., and Zeikus, J. G., 1983, Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments, Appl. Environ. Microbiol. 45:1491–1500.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., 1974, Production, modification, and consumption of atmospheric trace gases by microorganisms, Tellus 26:11–20.

    CAS  Google Scholar 

  • Schlegel, H. G., and Vollbrecht, D., 1980, Formation of the dehydrogenases for lactate, ethanol, and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus, J.Gen. Microbiol. 117:475–481.

    CAS  Google Scholar 

  • Schmidt, U., 1974, Molecular hydrogen in the atmosphere, Tellus 26:78–90.

    CAS  Google Scholar 

  • Schmidt, U., 1978, The latitudinal and vertical distribution of molecular hydrogen in the troposphere, J. Geophys. Res. 83:941–946.

    CAS  Google Scholar 

  • Schmidt, U., 1979, The solubility of carbon monoxide and hydrogen in water and sea-water at partial pressures of about 10" atmospheres, Tellus 31:68–74.

    CAS  Google Scholar 

  • Schubert, K. R., and Evans, H. J., 1976, Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts, Proc. Nat. Acad. Sei. USA 73:1207–1211.

    CAS  Google Scholar 

  • Schütz, H., Conrad, R., Goodwin, S. and Seiler, W., 1988, Emission of hydrogen fi-om deep and shallow freshwater environments.Biogeoehemistry, in press.

    Google Scholar 

  • Scranton, M. I., 1983, The role of the cyanobacterium Oseillatoria (Trichodesmium) thie- bautii in the marine hydrogen cycle, Mar. Eeolg. Progr. Sen 11:79–87.

    Google Scholar 

  • Scranton, M. I., 1984, Hydrogen cycling in the waters near Bermuda: The role of the nitrogen fixer, Oseillatoria thiebautii, Deep-Sea Res. 31:133–144.

    CAS  Google Scholar 

  • Scranton, M. I., and Farrington, J. W., 1977, Methane production in the waters off Walvis Bay, J. Geophys. Res. 82:4947–4953.

    CAS  Google Scholar 

  • Scranton, M. I., Barger, W. R., and Herr, F. L., 1980, Molecular hydrogen in the urban troposphere: Measurement of seasonal variability, J. Geophys. Res. 85:5575–5580.

    CAS  Google Scholar 

  • Scranton, M. I., Jones, M. M., and Herr, F. L., 1982, Distribution and variability of dissolved hydrogen in the Mediterranean Sea,J. Mar. Res. 40:873–891.

    CAS  Google Scholar 

  • Scranton, M. I., Novelli, P. C., and Loud, P. A., 1984, The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments, Limnol. Oceanogr. 29:993–1003.

    CAS  Google Scholar 

  • Sebacher, D. I., Harriss, R. C., and Bartlett, K. B., 1985, Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual. 14:40–46.

    CAS  Google Scholar 

  • Seiler, W., 1974, The cycle of atmospheric CO, Tellus 26:116–135.

    CAS  Google Scholar 

  • Seiler, W., 1978, The influence of the biosphere and the atmospheric CO and H2 cycles, in: Environmental Biogeochemistry and Geomicrobiology (W. E. Krumbein, ed.), pp. 773–810, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Seiler, W., 1984, Contribution of biological processes to the global budget of CH4 in the atmosphere, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 468–477, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Seiler, W., 1985, Increase of atmospheric methane: Causes and impact on the environment, in:WMO Special Environmental Report No. 16, WMO No. 647, pp. 177–203.

    Google Scholar 

  • Seiler, W., and Conrad, R., 1982, Global carbon monoxide fluxes: Inappropriate measurement procedures, Science 216 :161–162.

    Google Scholar 

  • Seiler, W., and Conrad, R., 1987, Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O in: The Geophysiology of Amazonia (R. E. Dickinson, ed.), pp. 133–162, Wiley, New York.

    Google Scholar 

  • Seiler, W., and Fishman, J., 1981, The distribution of carbon monoxide and ozone in the free troposphere, J. Geophys. Res. 86:7255–7265.

    CAS  Google Scholar 

  • Seiler, W., and Giehl, H., 1977, Influence of plants on the atmospheric carbon monoxide, Geophys. Res. Lett. 4:329–332.

    CAS  Google Scholar 

  • Seiler, W., and Schmidt, U., 1974, Dissolved nonconservative gases in seawater, in The Sea (E. D. Goldberg, ed.). Vol. 5, pp. 219–243, Wiley, New York.

    Google Scholar 

  • Seiler, W., and Warneck, P., 1972, Decrease of carbon monoxide mixing ratio at the tro- popause, J. Geophys. Res. 77:3204–3214.

    CAS  Google Scholar 

  • Seiler, W., and Zankl, H., 1975, Die Spurengase CO und H2 über München, Umschau 75:735–736.

    Google Scholar 

  • Seiler, W., and Zankl, H., 1976, Man’s impact on the atmospheric carbon monoxide cycle, in:Environmental Biogeochemistry (J. O. Nriagu, ed.). Vol. 1, pp. 25–37, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Seiler, W., Liebl, K. H., Stöhr, W. T., and Zakosek, H., 1977, CO- und H2-Abbau in Böden, Z.Pflanzenernähr, Bodenkd. 140:257–272.

    CAS  Google Scholar 

  • Seiler, W., Giehl, H., and Bunse, G., 1978, The influence of plants on atmospheric carbon monoxide and dinitrogen oxide, Pure AppL Geophys. 116:439–451.

    CAS  Google Scholar 

  • Seiler, W. Conrad, R., and Scharffe, D., 1984a, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmos. Chem. 1:171–186.

    CAS  Google Scholar 

  • Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and Scharffe, D., 1984b, Methane emission from rice paddies, J. Atmos. Chem. 1:241–268.

    CAS  Google Scholar 

  • Seiler, W., Giehl, H., Brunke, E. G., and Halliday, E., 1984c, The seasonality of CO abundance in the Southern Hemisphere, Tellus 36:219–231.

    Google Scholar 

  • Setser, P. J., Bullister, J. L., Frank, E. C., Guinasso, Jr., N. L., and Schink, D. R., 1982, Relationships between reduced gases, nutrients, and fluorescence in surface waters off Baja California, Deep-Sea Res. 29:1203–1215.

    CAS  Google Scholar 

  • Simpson, F. B., and Burris, R. H., 1984, A nitrogen pressure of 50 atmosphere does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097.

    PubMed  CAS  Google Scholar 

  • Simpson, F. J., Narasimhachari, N., and Westlake, D. W. S., 1963, Degradation of rutin by Aspergillus flavus. The carbon monoxide producing system, Can. J. Microbiol. 9:15–25.

    CAS  Google Scholar 

  • Singh, H. B., 1977, Preliminary estimation of the average tropospheric HO concentrations in the Northern and Southern Hemispheres, Geophys. Res. Lett. 4:453–456.

    CAS  Google Scholar 

  • Sjöstrand, T., 1970, Early studies of CO production,Ann. N. Y. Acad. Sei. 174:5–10.

    Google Scholar 

  • Skujins, J., 1978, History of abiontic soil enzyme research, in: Soil Enzymes (R. G. Bums, ed.), pp. 1–49, Academic Press, London.

    Google Scholar 

  • Skujins, J., 1984, Microbial ecology of desert soil, in: Advances in Microbial Ecology, Vol. 7 (K. C. Marshall, ed.), pp. 49–91, Plenum Press, New York.

    Google Scholar 

  • Spratt, Jr., H. G., and Hubbard, J. S., 1981, Carbon monoxide metabolism in roadside soils, Appl. Environ. Microbiol. 41:1191–1201.

    Google Scholar 

  • Strayer, R. F., and Tiedje, J. M., 1978, In situ methane production in a small, hypereu- trophic, hard-water lake: Loss of methane from sediments by vertical diffusion and ebullition, Limnol. Oceanogr. 23:1201–1206.

    CAS  Google Scholar 

  • Swinnerton, J. W., and Lamontagne, R.A., 1974, Carbon monoxide in the South Pacific Ocean, 26:136–142.

    CAS  Google Scholar 

  • Swinnerton, J. W., Linnenbom, V. J., and Lamontagne, R. A., 1970, Ocean: A natural source of carbon monoxide. Science 167:984–986.

    PubMed  CAS  Google Scholar 

  • Swinnerton, J. W., Lamontagne, R. A., and Bunt, J. S., 1977, Field Studies of Carbon Monoxide and Light Hydrocarbon Production Related to Natural Biological Processes, Naval Research Laboratory, Washington, D. C, Report 8099, pp. 1–9.

    Google Scholar 

  • Tenhunen, R., Marver, H. S., and Schmid, R., 1969, Microsomal heme oxygenase. Characterization of the enzyme, J. Biol. Chem. 244:6388–6394.

    PubMed  CAS  Google Scholar 

  • Trevors, J. T., 1985, Hydrogen consumption in soil. Plant Soil 87:417–422.

    Google Scholar 

  • Troxler, R. F., 1972, Synthesis of bile pigments in plants. Formation of carbon monoxide and phycocyanobilin in wild-type and mutant strains of the alga, Cyanidium caldar- ium, Biochemistry 11:4235–4242.

    CAS  Google Scholar 

  • Troxler, R. F., and Dokos, J. M., 1973, Formation of carbon monoxide and bile pigment in red and blue-green algae. Plant Physiol. 51:72–75.

    PubMed  CAS  Google Scholar 

  • Uratsu, S. K., Keyer, H. H., Weber, D. F., and Lim, S. T., 1982, Hydrogen uptake (HUP) activity of Rhizobium japonicum from major U. S. soybean production areas. Crop Sei. 22:600–602.

    Google Scholar 

  • Vallentyne, J. R., and Whittaker, J. R., 1956, On the presence of free sugars in filtered lake water. Science 124:1026–1027.

    PubMed  CAS  Google Scholar 

  • Walker, C. C., and Yates, M. G., 1978, The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum, Biochimie 60:225–231.

    PubMed  CAS  Google Scholar 

  • Wangersky, P. J., 1976, The surface film as a physical environment, Annu. Rev. EcoL Syst. 7:161–176.

    Google Scholar 

  • Westlake, D. W. S., Talbot, G., Blakley, E. R., and Simpson, F. J., 1959, Microbial decomposition of rutin. Can. J. Microbiol. 5:621–629.

    PubMed  CAS  Google Scholar 

  • Wilks, S. S., 1959, Carbon monoxide in green plants. Science 129:964–966.

    PubMed  CAS  Google Scholar 

  • Williams, P. J. LeB., 1981, Microbial contribution to overall marine plankton metabolism: Direct measurement of respiration, Oceanol. Acta 4:359–364.

    Google Scholar 

  • Williams, R. T., and Bainbridge, A. E., 1973, Dissolved CO, CH4, and H2 in the southern ocean, J. Geophys. Res. 78:2691–2694.

    CAS  Google Scholar 

  • Wilson, D. F., Swinnerton, J. W., and Lamontagne, R. A., 1970, Production of carbon monoxide and gaseous hydrocarbons in seawater: Relation to dissolved organic carbon, Science UmSll-1519.

    Google Scholar 

  • Winkler, L. W., 1901, Die Löslichkeit der Gase in Wasser (Dritte Abhandlung), Ber. Chem. Ges. 34:1400–1422.

    Google Scholar 

  • Wittenberg, J., 1960, The source of carbon monoxide in the float of the Portuguese Man-of War Physalis physalis, J. Exp. Biol. 37:698–705.

    CAS  Google Scholar 

  • Wolff, D. G., and Bidlack, W. R., 1976, The formation of carbon monoxide during peroxidation of microsomal lipids, Biochem. Biophys. Res. Commun. 73:850–857.

    PubMed  CAS  Google Scholar 

  • Yamane, I., and Sato, K., 1963, Decomposition of organic acids and gas formation in flooded soil. Soil Sei. Plant Nutr. 9:32–36.

    CAS  Google Scholar 

  • Yamane, I., and Sato, K., 1964, Decomposition of glucose and gas formation in flooded soil.Soil Sei. Plant Nutr. 10:127–133.

    CAS  Google Scholar 

  • Yamane, I. and Sato, K., 1967, Effect of temperature on the decomposition of organic substances in flooded soil, Soil Sei. Plant Nutr. 13:94–100.

    CAS  Google Scholar 

  • Yoshida, T., Noguchi, M., and Kikuchi, G., 1982, The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system, J. Biol. Chem. 257:9345–9348.

    PubMed  CAS  Google Scholar 

  • Zafiriou, O. C, Joussotdubien, J., Zepp, R. G., and Zika, R. G., 1984, Photochemistry of natural waters. Rev. Environ. Sei. Technol. 18:A358-A371.

    Google Scholar 

  • Zavarzin, G. A., and Nozhevnikova, A. N., 1977, Aerobic carboxydobacteria, Microb. Ecol. 3:305–326.

    CAS  Google Scholar 

  • Zehnder, A. J. B., 1978, Ecology of methane formation, in: Water Pollution Microbiology (R. Mitchell, ed.). Vol. 2, pp. 349–376, Wiley, New York.

    Google Scholar 

  • Zeikus, J. G., 1983, Metabolic communication between biodegradative populations in nature, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 423–462, Cambridge University Press, Cambridge.

    Google Scholar 

  • Zimmerman, P. R., Chatfield, R. B., Fishman, J., Crutzen, P. J., and Hanst, P. L., 1978, Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation,Geophys. Res. Lett. 5:679–682.

    CAS  Google Scholar 

  • Zimmerman, P. R., Greenberg, J. G., Wandiga, S. O., and Crutzen, P. J., 1982, Termites: A potential large source of atmospheric methane, carbon dioxide, and molecular hydrogen, Science218:563–565.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Conrad, R. (1988). Biogeochemistry and Ecophysiology of Atmospheric CO and H2 . In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics