Skip to main content

Abstract

Channels are integral membrane proteins that permit charged species to traverse the lipid bilayers of cells by providing a water-filled pathway through which ions may pass. All cell types face the problem of how to regulate the transport of ions across the inhospitable hydrophobic environment of the cell membrane, and they all solve this problem in part by employing channels of various sorts. Channels generally have several characteristics:

  1. 1.

    Ion flow through channels is a passive—though possibly complex—process that derives the energy for ion flux solely from concentration gradients of the ion species moving through the channel. Ion motion is much like that in free diffusion but may be complicated by ion-ion and ion-protein interactions.

  2. 2.

    Channels are selective in that only certain ion species are permitted to pass through. Different types of channels exist, and each channel type generally has its characteristic selectivity. For example, one channel species might allow a Na+ flux and exclude K+ ions whereas another sort of channel would accept K+ ions and not Na+ ions.

  3. 3.

    Ion flux is regulated by the channel. A usual form of regulation is termed gating, in which case a pore through which ions can pass is opened and closed by conformational changes in the channel protein. Another form of regulation occurs when a cell controls the number and distribution of channels by metabolic or other means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In: The Cell Surface and Neuronal function. C. W. Cotman, G. Poste, and G. L. Nicholson, eds. Elsevier/North-Holland, Amsterdam, pp. 191–260.

    Google Scholar 

  2. Conti-Tronconi, B. M., M. W. Hunkapiller, J. M. Lindstrom, and M. A. Raftery. 1982. Subunit structure of the acetylcholine receptor from Electrophorus electricus. Proc. Natl. Acad. Sci. USA 79:6489–6493.

    PubMed  CAS  Google Scholar 

  3. Lindstrom, J., S. Tzartos, W. Gullick, S. Hochschwender, L. Swanson, M. Jacob, P. Sargent, and M. Montai. 1983. Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscles and brain and the autoimmune response to receptor in myasthenia gravis. Cold Spring Harbor Symp. Quant. Biol. 48:89–100.

    PubMed  CAS  Google Scholar 

  4. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutani, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa. 1982. Primary structure of alpha-subunit precursor of Torpedo califor-nica acetylcholine receptor deduced from cDNA sequence. Nature (London) 299:191–191.

    Google Scholar 

  5. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, H. Takashima, S. Inayama, T. Miyata, and S. Numa. 1983. Primary structures of beta-and gamma-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 301:251–255.

    CAS  Google Scholar 

  6. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Miyata, and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (London) 302:528–532.

    CAS  Google Scholar 

  7. Claudio, T., M. Ballivet, J. Patrick, and S. Heinemann. 1983. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc. Natl. Acad. Sci. USA 80:1111–1115.

    PubMed  CAS  Google Scholar 

  8. Sumikawa, K., M. Houghton, J. C. Smith, L. Bell, B. M. Richards, and E. A. Barnard. 1982. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acid Res. 10:5809–5822.

    PubMed  CAS  Google Scholar 

  9. Devillers-Thiery, A., J. Giraudat, M. Bentaboulet, and J. P. Changeux. 1983. Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80:2067–2071.

    PubMed  CAS  Google Scholar 

  10. Lindstrom, J., J. Merlie, and G. Yogeeswaran. 1979. Biochemical properties of acetylcholine receptor subunits from Torpedo californica. Biochemistry 18:4465–4470.

    PubMed  CAS  Google Scholar 

  11. Vandlen, R. L., W. C. S. Wu, J. C. Eisenach, and M. A. Raftery. 1979. Studies of the composition of purified Torpedo californica acetylcholine and of its subunits. Biochemistry 18:1845–1854.

    PubMed  CAS  Google Scholar 

  12. Reynolds, J., and A. Karlin. 1978. Molecular weight in detergent solution of acetylcholine receptor in Torpedo californica. Biochemistry 17:2035–2038.

    PubMed  CAS  Google Scholar 

  13. Lindstrom, J., R. Anholt, B. Einarson, A. Engel, M. Osame, and M. Montai. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles and study of agonist induced cation channel regulation. J. Biol. Chem. 255:8340–8350.

    PubMed  CAS  Google Scholar 

  14. Wu, W. C. S., H. P. H. Moore, and M. A. Raftery. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78:775–779.

    PubMed  CAS  Google Scholar 

  15. Froehner, S. C., and S. Rafto. 1979. Comparison of the subunits of Torpedo californica acetylcholine receptor by peptide mapping. Biochemistry 18:301–307.

    PubMed  CAS  Google Scholar 

  16. Raftery, M. A., M. W. Hunkapiller, C. D. Strader, and L. E. Hood. 1980. Acetylcholine receptor: Complex of homologous subunits. Science 208:1454–1457.

    PubMed  CAS  Google Scholar 

  17. Lindstrom, J., B. Walter, and B. Einarson, 1979. Immuno-chem-ical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle. Biochemistry 18:4470–4480.

    PubMed  CAS  Google Scholar 

  18. Gullick, W., and J. Lindstrom. 1983. Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica. Biochemistry 22:3312–3320.

    PubMed  CAS  Google Scholar 

  19. Karlin, A. 1983. The anatomy of a receptor. Neurosci. Comment. 1:111–123.

    Google Scholar 

  20. Finer-Moore, J., and R. M. Stroud. 1984. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81:155–159.

    PubMed  CAS  Google Scholar 

  21. Cartaud, J. E., L. Bendetti, J. B. Cohen, J. C. Meunier, and J. P. Changeux. 1973. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 33:109–113.

    PubMed  CAS  Google Scholar 

  22. Nickel, E., and L. T. Potter. 1973. Ultrastructure of isolated membranes of Torpedo electric tissue. Brain Res. 57:508–517.

    PubMed  CAS  Google Scholar 

  23. Klymkowsky, M. W., and R. M. Stroud. 1979. Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. J. Mol. Biol. 128:319–334.

    PubMed  CAS  Google Scholar 

  24. Kistler, J., R. M. Stroud, M. W. Klymkowsky, R. A. Lalancette, and R. H. Fairclough. 1982. Structure and function of an acetylcholine receptor. Biophys. J. 37:371–383.

    PubMed  CAS  Google Scholar 

  25. Ross, M. J., M. W. Klymkowsky, D. A. Agard, and R. M. Stroud. 1977. Structural studies of a membrane bound acetylcholine receptor from Torpedo californica. J. Mol. Biol. 116:635–659.

    PubMed  CAS  Google Scholar 

  26. St. John, P. A., S. C. Froehner, D. A. Goodenough, and J. B. Cohen. 1982. Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides. J. Cell Biol. 92:333–342.

    PubMed  CAS  Google Scholar 

  27. Wennogle, L. P., and J. P. Changeux. 1980. Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur. J. Biochem. 106:381–393.

    PubMed  CAS  Google Scholar 

  28. Strader, C. D., and M. A. Raftery. 1980. Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex. Proc. Natl. Acad. Sci. USA 77:5807–5811.

    PubMed  CAS  Google Scholar 

  29. Froehner, S. C. 1981. Identification of exposed and buried determinants of the membrane bound acetylcholine receptor from Torpedo californica. Biochemistry 20:4905–4515.

    PubMed  CAS  Google Scholar 

  30. Anderson, D., and G. Blobel. 1981. In vitro synthesis, glycosyla-tion and membrane insertion of the four subunits of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78:5598–5602.

    PubMed  CAS  Google Scholar 

  31. Anderson, D., G. Blobel, S. Tzartos, W. Gullick, and J. Lindstrom. 1983. Transmembrane orientation of an early biosyn-thetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies. J. Neurosci. 3:1773–1784.

    PubMed  CAS  Google Scholar 

  32. Ballivet, M., J. Patrick, J. Lee, and S. Heinemann. 1982. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79:4466–4470.

    PubMed  CAS  Google Scholar 

  33. Holtzman, E., D. Wise, J. Wall, and A. Karlin. 1982. Electron microscopy of complexes of isolated acetylcholine receptor, bio-tinyl-toxin and avidin. Proc. Natl. Acad. Sci. USA 79:310–314.

    PubMed  CAS  Google Scholar 

  34. Karlin, A., E. Holtzman, N. Yodh, P. Lobel, J. Wall, and J. Hainfeld. 1983. The arrangement of the subunits of the acetylcholine receptor of Torpedo californica. J. Biol. Chem. 258:6678–6681.

    PubMed  CAS  Google Scholar 

  35. Hamilton, S. L., M. McLaughlin, and A. Karlin. 1977. Disulfide bond cross-linked dimer in acetylcholine receptor from Torpedo californica. Biochem. Biophys. Res. Commun. 79:692–699.

    PubMed  CAS  Google Scholar 

  36. Hamilton, S. L., M. McLaughlin, and A. Karlin. 1979. Formation of disulfide-linked oligomers of acetylcholine receptor in membrane from Torpedo electric tissue. Biochemistry 18:155–163.

    PubMed  CAS  Google Scholar 

  37. Fairclough, R. H., J. Finer-Moore, R. A. Love, D. Kristofferson, P. J. Desmueles, and R. M. Stroud. 1983. Subunit organization and structure of an acetylcholine receptor. Cold Spring Harbor Symp. Quant. Biol. 48:9–20.

    PubMed  CAS  Google Scholar 

  38. Reiter, M. J., D. A. Cowburn. J. M. Prives, and A. Karlin. 1972. Affinity labeling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecyl sulfate. Proc. Natl. Acad. Sci. USA 69:1168–1172.

    PubMed  CAS  Google Scholar 

  39. Karlin, A. 1969. Chemical modification of the active site of the acetylcholine receptor. J. Gen. Physiol. 54:245s-264s.

    Google Scholar 

  40. Weill, C. L., M. G. McNamee, and A. Karlin. 1974. Affinity labeling of purified acetylcholine receptor from Torpedo californica. Biochem. Biophys. Res. Commun. 61:997–1003.

    PubMed  CAS  Google Scholar 

  41. Dionne, V. E., J. H. Steinbach, and C. F. Stevens. 1978. Voltage dependence of agonist effectiveness at the frog neuromuscular junction. J. Physiol. (London) 281:421–444.

    CAS  Google Scholar 

  42. Damle, V., and A. Karlin. 1978. Affinity labeling of one of two alpha-neurotoxin binding sites in acetylcholine receptor from Torpedo californica. Biochemistry 17:2039–2045.

    PubMed  CAS  Google Scholar 

  43. Neubig, R. R., and J. B. Cohen. 1979. Equilibrium binding of [3H] acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions. Biochemistry 18:5464–5475.

    PubMed  CAS  Google Scholar 

  44. Sine, S. M., and P. Taylor. 1981. Relationship between reversible antagonist occupancy and the functional capacity of the acetylcholine receptor. J. Biol. Chem. 256:6692–6699.

    PubMed  CAS  Google Scholar 

  45. Dunn, S. M. J., and M. A. Raftery. 1982. Multiple binding sites for agonists on Torpedo californica acetylcholine receptor. Biochemistry 21:6264–6272.

    PubMed  CAS  Google Scholar 

  46. Haggerty, J. G., and S. C. Froehner. 1981. Restoration of 125I-alpha-bungarotoxin binding activity to the alpha subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Biol. Chem. 256:8294–8297.

    PubMed  CAS  Google Scholar 

  47. Tzartos, S. J., and J. P. Changeux. 1983. High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and to its 27, 000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor: Requirement for sodium dodecyl sulfate. EMBO J. 2: 381–387.

    PubMed  CAS  Google Scholar 

  48. Gershoni, J. M., E. Hawrot, and T. L. Lentz. 1983. Binding of alpha-bungarotoxin to isolated alpha subunit of the acetylcholine receptor of Torpedo californica: Quantitative analysis with protein blots. Proc. Natl. Acad. Sci. USA 80:4973–4977.

    PubMed  CAS  Google Scholar 

  49. Oblas, B., N. D. Boyd, and R. H. Singer. 1983. Analysis of receptor-ligand interactions using nitrocellulose gel transfer: Application to Torpedo acetylcholine receptor and alpha bungarotox-in. Anal. Biochem. 130:1–8.

    PubMed  CAS  Google Scholar 

  50. Wilson, P. T., J. M. Gershoni, E. Hawrot, and T. L. Lentz. 1984. Binding of alpha-bungarotoxin to proteolytic fragments of the alpha subunit of Torpedo acetylcholine receptor analyzed by protein transfer on positively charged membrane filters. Proc. Natl. Acad. Sci. USA 81:2553–2557.

    PubMed  CAS  Google Scholar 

  51. Oswald, R. E., and J. P. Changeux. 1981. Selective labeling of the delta subunit of the acetylcholine receptor by a covalent local anesthetic. Biochemistry 20:7166–7174.

    PubMed  CAS  Google Scholar 

  52. Blanchard, S. G., and M. A. Raftery. 1979. Identification of the polypeptide chains in Torpedo californica electroplax membranes that interact with a local anesthetic analog. Proc. Natl. Acad. Sci. USA 76:81–85.

    PubMed  CAS  Google Scholar 

  53. Oswald, R. E., and J. P. Changeux. 1981. Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 78:3925–3929.

    PubMed  CAS  Google Scholar 

  54. Kaldany, R. R., and A. Karlin. 1983. Reaction of quinacrine mustard with the acetylcholine receptor from Torpedo californica: Functional consequences and sites of labeling. J. Biol. Chem. 258: 6232–6242.

    PubMed  CAS  Google Scholar 

  55. Huganir, R. L., and P. Greengard. 1983. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80:1130–1134.

    PubMed  CAS  Google Scholar 

  56. Tank, D. W., R. L. Huganir, P. Greengard, and W. W. Webb. 1983. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80:5129–5133.

    PubMed  CAS  Google Scholar 

  57. Patrick, J., and J. Lindstrom. 1973. Autoimmune response to acetylcholine receptors. Science 180:871–872.

    PubMed  CAS  Google Scholar 

  58. Lindstrom, J. M., M. E. Seybold, V. A. Lennon, S. Whit-tingham, and D. Duane. 1976. Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates and diagnostic value. Neurology 26:1054–1059.

    PubMed  CAS  Google Scholar 

  59. Appel, S. H., R. Anwyl, M. W. McAdams, and S. Elias. 1977. Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins. Proc. Natl. Acad. Sci. USA 74:2130–2134.

    PubMed  CAS  Google Scholar 

  60. Drachman, D. B., C. W. Angus, R. N. Adams, J. D. Michelson, and G.J. Hoffman. 1978. Myasthenic antibodies crosslink acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 298: 1116–1122.

    PubMed  CAS  Google Scholar 

  61. Heinemann, S., S. Bevan, R. Kullberg, J. Lindstrom, and J. Rice. 1977. Modulation of the acetylcholine receptor by anti-receptor antibody. Proc. Natl. Acad. Sci. USA 74:3090–3094.

    PubMed  CAS  Google Scholar 

  62. Lindstrom, J., and B. Einarson. 1979. Antigenic modulation and receptor loss in EAMG. Muscle Nerve 2:173–179.

    PubMed  CAS  Google Scholar 

  63. Engel, A., M. Tsujihata, J. Lindstrom, and V. Lennon. 1976. The motor end-plate in myasthenia gravis and in experimental autoimmune myasthenia gravis: A quantitative ultrastructural study. Ann. N.Y. Acad. Sci. 274:60–79.

    PubMed  CAS  Google Scholar 

  64. Engel, A., K. Sahashi, E. Lambert, and F. Howard. 1979. The ultrastructural localization of the acetylcholine receptor, immunoglobulin G, and the third and ninth complement components at the motor endplate and the implications for the pathogenesis of myasthenia gravis. Excerpta Med. Int. Congr. Ser. 455:111–122.

    CAS  Google Scholar 

  65. Tzartos, S., and J. M. Lindstrom. 1980. Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77:755–759.

    PubMed  CAS  Google Scholar 

  66. Tzartos, S. J., M. Seybold, and J. Lindstrom. 1982. Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79:188–192.

    PubMed  CAS  Google Scholar 

  67. Lennon, V., and E. Lambert. 1980. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature (London) 285:238–240.

    CAS  Google Scholar 

  68. Mochly-Rosen, C., and S. Fuchs. 1981. Monoclonal anti-acetylcholine receptor antibodies directed against the cholinergic binding site. Biochemistry 20:5920–5924.

    PubMed  CAS  Google Scholar 

  69. James, R., A. Kato, M. Rey, and B. Fulpius. 1980. Monoclonal antibodies directed against the neurotransmitter binding site of nicotinic acetylcholine receptor. FEBS Lett. 120:145–148.

    PubMed  CAS  Google Scholar 

  70. Gomez, C., D. Richman, P. Berman, S. Burres, B. Arnason, and F. Fitch. 1979. Monoclonal antibodies against purified nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun. 88:575–582.

    PubMed  CAS  Google Scholar 

  71. Gomez, C., D. Richman, S. Burres, and B. Arnason. 1981. Monoclonal hybridoma anti-acetylcholine receptor antibodies: Antibody specificity and effect of passive transfer. Ann. N.Y. Acad. Sci. 377:97–109.

    PubMed  CAS  Google Scholar 

  72. Watters, D., and A. Maelicke. 1983. Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies. Biochemistry 22:1811-1819.

    Google Scholar 

  73. Dwyer, D., J. Kearney, R. Bradley, G. Kemp, and S. Oh. 1981. Interaction of human antibody and murine monoclonal antibody with muscle acetylcholine receptor. Ann. N.Y. Acad. Sci. 377:143–157.

    PubMed  CAS  Google Scholar 

  74. Tzartos, S.J., D. E. Rand, B. E. Einarson, and J. Lindstrom. 1981. Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol. Chem. 256: 8635–8645.

    PubMed  CAS  Google Scholar 

  75. Tzartos, S., and J. Lindstrom. 1981. Production and characterization of monoclonal antibodies for use as probes of acetylcholine receptors. In: Monoclonal Antibodies in Endocrine Research. R. Fellows and G. Einsenbarth, eds. Raven Press, New York. pp. 69–86.

    Google Scholar 

  76. Tzartos, S., L. Langeberg, S. Hochschwender, and J. Lindstrom. 1983. Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett. 158:116–118.

    PubMed  CAS  Google Scholar 

  77. Garabedian, B., and S. Morel. 1983. Monoclonal antibodies against the human acetylcholine receptor. Biochem. Biophys. Res. Commun. 113:1–9.

    Google Scholar 

  78. Froehner, S., K. Douville, S. Klink, and W. Culp. 1983. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J. Biol. Chem. 258:7112–7120.

    PubMed  CAS  Google Scholar 

  79. Mihovilovic, M., and D. Richman. 1983. Monoclonal antibody (mcab) 247G: Example of a functional probe for the acetylcholine receptor (AcChR) molecule. Neurosci. Abstr. 9:158.

    Google Scholar 

  80. Roison, M. P., Y. Gu, and Z. W. Hall. 1983. The specificity of a myasthenic serum for developmentally different forms of the acetylcholine receptor. Neurosci. Abstr. 9:580.

    Google Scholar 

  81. Gullick, W. J., S. Tzartos, and J. Lindstrom. 1981. Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping. Biochemistry 20:2173–2180.

    PubMed  CAS  Google Scholar 

  82. Hawrot, E., J. M. Gershoni, T. G. Burrage, G. S. Paladino, T. L. Lentz, and L. L. Y. Chun. 1982. Monoclonal antibodies to nicotinic acetylcholine receptor characterized by electrotransfer techniques. Neurosci. Abstr. 8:335.

    Google Scholar 

  83. Sargent, P., B. Hedges, L. Tsavaler, L. Clemmons, S. Tzartos, and J. Lindstrom. 1984. The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by crossreacting monoclonal antibodies. J. Cell Biol. 98:609–618.

    PubMed  CAS  Google Scholar 

  84. Souroujon, M., D. Mochly-Rosen, A. Gordon, and S. Fuchs. 1983. Interaction of monoclonal antibodies to Torpedo acetylcholine receptor with the receptor of skeletal muscle. Muscle Nerve 6:303–311.

    PubMed  CAS  Google Scholar 

  85. Anderson, D., P. Walter, and G. Blobel. 1982. Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. J. Cell Biol. 93:501–506.

    PubMed  CAS  Google Scholar 

  86. Contri-Tronconi, B., S. Tzartos, and J. Lindstrom. 1981. Monoclonal antibodies as probes of acetylcholine receptor structure. II. Binding to native receptor. Biochemistry 20:2181–2191.

    Google Scholar 

  87. Lindstrom, J., S. Tzartos, and B. Gullick. 1981. Structure and function of acetylcholine receptors studied using monoclonal antibodies. Ann. N.Y. Acad. Sci. 377:1–19.

    PubMed  CAS  Google Scholar 

  88. Suarez-Isla, B. A., K. Wan, J. Lindstrom, and M. Montai. 1983. Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry 22:2319–2323.

    PubMed  CAS  Google Scholar 

  89. Patrick, J., and W. Stallcup. 1977. Immunological distinction between acetylcholine receptor and the alpha bungarotoxin binding component on sympathetic neurons. Proc. Natl. Acad. Sci. USA 76:4689–4692.

    Google Scholar 

  90. Swanson, L., J. Lindstrom, L. Schmued, D. O’Leary, and W. Cowan. 1983. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick. Proc. Natl. Acad. Sci. USA 80:4532–4536.

    PubMed  CAS  Google Scholar 

  91. Hawrot, E., J. Holliday, B. Schweitzer, and L. L. Y. Chun. 1983. Monoclonal antibodies to Torpedo nicotinic acetylcholine receptor that cross-react with specific subsets of mammalian peripheral neurons and smooth muscle. Neursci. Abstr. 9:577.

    Google Scholar 

  92. Lodish, H. F., and J. E. Rothman. 1978. The assembly of cell membranes. Sci. Am. 240:48–63.

    Google Scholar 

  93. Sidman, C., M. J. Potash, and G. Kohler. 1981. Roles of protein and carbohydrate in glycoprotein processing and secretion: Studies using mutants expressing altered IgM mu chains. J. Biol. Chem. 256:13180–13187.

    PubMed  CAS  Google Scholar 

  94. Krangel, M. S., H. T. Orr, and J. L. Strominger. 1979. Assembly and maturation of HLA-A and HLA-B antigens in vivo. Cell 18:979–991.

    PubMed  CAS  Google Scholar 

  95. Krangel, M. S., D. Pious, and J. L. Strominger. 1982. Human histocompatibility antigen mutants immunoselected in vitro: Biochemical analysis of a mutant which synthesizes an altered HLA-A2 heavy chain. J. Biol. Chem. 257:5296–5305.

    PubMed  CAS  Google Scholar 

  96. Omary, M. B., and I. S. Trowbridge. 1981. Biosynthesis of the human transferrin receptor in cultured cells. J. Biol. Chem. 256:12888–12892.

    PubMed  CAS  Google Scholar 

  97. Owen, M. J., A. M. Kissonerghis, and H. F. Lodish. 1980. Biosynthesis of HLA-A and HLA-B antigens in vivo. J. Biol. Chem. 255:9678–9684.

    PubMed  CAS  Google Scholar 

  98. Owen, M. J., A. M. Kissonerghis, H. F. Lodish, and M. J. Crumpton. 1981. Biosynthesis and maturation of HLA-DR antigens in vivo. J. Biol. Chem. 256:8987–8993.

    PubMed  CAS  Google Scholar 

  99. Mains, P. E., and C. H. Sibley. 1983. The requirement of light chain for the surface deposition of the heavy chain of immunoglobulin M. J. Biol. Chem. 258:5027–5033.

    PubMed  CAS  Google Scholar 

  100. Fambrough, D. 1979. Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59:165–227.

    PubMed  CAS  Google Scholar 

  101. Patrick, J., J. McMillan, H. Wolfson, and J. C. O’Brien. 1977. Acetylcholine receptor metabolism in a nonfusing muscle cell line. J. Biol. Chem. 252:2143–2153.

    PubMed  CAS  Google Scholar 

  102. Fambrough, D. M., and P. N. Devreotes. 1978. Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J. Cell Biol. 76:237–244.

    PubMed  CAS  Google Scholar 

  103. Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–358.

    PubMed  CAS  Google Scholar 

  104. Farquhar, M. G., and G. E. Palade. 1981. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J. Cell Biol. 91:77s-103s.

    Google Scholar 

  105. Sabatini, D. D., G. Kreibich, T. Morimoto, and M. Adesnik. 1982. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 92:1–22.

    PubMed  CAS  Google Scholar 

  106. Gardner, J. M., and D. M. Fambrough. 1979. Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence against recycling. Cell 16:661–674.

    PubMed  CAS  Google Scholar 

  107. Mendez, B., P. Valenzuela, J. A. Martial, and J. D. Baxter. 1980. Cell-free synthesis of acetylcholine-receptor polypeptides. Sci-ence 209:695–697.

    CAS  Google Scholar 

  108. Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–1500.

    PubMed  CAS  Google Scholar 

  109. Anderson, D. J., P. Walter, and G. Blobel. 1982. Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. J. Cell Biol. 93:501–506.

    PubMed  CAS  Google Scholar 

  110. Gilmore, R., P. Walter, and G. Blobel. 1982. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95:470–477.

    PubMed  CAS  Google Scholar 

  111. Wennogle, L. P., R. Oswald, T. Saitoh, and J. P. Changeux. 1981. Dissection of the 66, 000-dalton subunit of the acetylcholine receptor. Biochemistry 20:2492–2497.

    PubMed  CAS  Google Scholar 

  112. Merlie, J., J. Hofler, and R. Sebbane. 1981. Acetylcholine receptor synthesis from membrane polysomes. J. Biol. Chem. 256:6995–6999.

    PubMed  CAS  Google Scholar 

  113. Sebbane, R., G. Clokey, J. Merlie, S. Tzartos, and J. Lindstrom. 1983. Characterization of the mRNA for mouse muscle acetylcholine receptor alpha subunit by quantitative translation in vitro. J. Biol. Chem. 258:3294–3303.

    PubMed  CAS  Google Scholar 

  114. Merlie, J., R. Sebbane, S. Gardner, and J. Lindstrom. 1983. A cDNA clone for the alpha subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA 80:3845–3849.

    PubMed  CAS  Google Scholar 

  115. Boulter, J., and J. Patrick. 1977. Purification of an acetylcholine receptor from a nonfusing muscle cell line. Biochemistry 16:4900–4908.

    PubMed  CAS  Google Scholar 

  116. Merlie, J. P., R. Sebbane, S. Tzartos, and J. Lindstrom. 1982. Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J. Biol. Chem. 257:2694–2701.

    PubMed  CAS  Google Scholar 

  117. Merlie, J. P., and R. Sebbane. 1981. Acetylcholine receptor sub-units transit a precursor pool before acquiring alpha-bungarotoxin binding activity. J. Biol Chem. 256:3605–3608.

    PubMed  CAS  Google Scholar 

  118. Merlie, J. P., and J. Lindstrom. 1983. Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an alpha subunit species that may be an assembly intermediate. Cell 34:747–757.

    PubMed  CAS  Google Scholar 

  119. Anderson, D. J., and G. Blobel. 1983. Identification of homo-oligomers as potential intermediates in acetylcholine receptor sub-unit assembly. Proc. Natl. Acad. Sci. USA 80:4359–4363.

    PubMed  CAS  Google Scholar 

  120. Prives, J., and D. Bar-Sagi. 1983. Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells. J. Biol Chem. 258: 1775–1780.

    PubMed  CAS  Google Scholar 

  121. Barnard, E. A., R. Miledi, and K. Sumikawa. 1982. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. London. Ser. B 215:241–246.

    CAS  Google Scholar 

  122. Sumikawa, K., M. Houghton, J. S. Emtage, B. M. Richards, and E. A. Barnard. 1981. Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature (London) 292:862–864.

    CAS  Google Scholar 

  123. Mishina, M., T. Kurosaki, T. Tobimatsu, Y. Morimoto, M. Noda, T. Yamamoto, M. Terao, J. Lindstrom, T. Takahashi, M. Kuno, and S. Numa. 1984. Expression of functional acetylcholine receptor from cloned cDNAs. Nature (London) 307:604–608.

    CAS  Google Scholar 

  124. Burden, S. 1977. Development of the neuromuscular junction in the chick embryo: The number, distribution, and stability of acetylcholine receptors. Dev. Biol. 57:317–329.

    PubMed  CAS  Google Scholar 

  125. Ferruck, H. C., and M. M. Salpeter. 1976. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J. Cell Biol. 69:144–158.

    Google Scholar 

  126. Salpeter, M. M., and R. Harris. 1983. Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J. Cell Biol. 96:1781–1785.

    PubMed  CAS  Google Scholar 

  127. Frank, E., and G. D. Fischbach. 1979. Early events in neuromuscular junction formation in vitro. J. Cell Biol 83:143–158.

    PubMed  CAS  Google Scholar 

  128. Jessell, T., R. E. Siegel, and G. D. Fischbach. 1979. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc. Natl. Acad. Sci. USA 76:5397–5401.

    PubMed  CAS  Google Scholar 

  129. Nitkin, M., E. W. Godfrey, B. G. Wallace, and U. J. McMahan. 1983. Characterization of the AChR aggregating molecules in extracellular matrix fractions from electric organ and muscle. Neu-rosci. Abstr. 9:1179.

    Google Scholar 

  130. Hasegawa, S., H. Kuromi, and Y. Hagihara. 1982. Neuronal regulation of muscle properties and the trophic substances. Trends Pharmacol Sci. August:340–342.

    Google Scholar 

  131. Burden, S. 1977. Acetylcholine receptors at the neuromuscular junction: Developmental change in receptor turnover. Dev. Biol 61:79–85.

    PubMed  CAS  Google Scholar 

  132. Brockes, J. P., and Z. W. Hall. 1975. Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors. Biochemistry 14:2100–2106.

    PubMed  CAS  Google Scholar 

  133. Weinberg, C. B., and Z. W. Hall. 1979. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc. Natl. Acad. Sci. USA 76:504–508.

    PubMed  CAS  Google Scholar 

  134. Reiness, C. G., and Z. W. Hall. 1981. The developmental change in immunological properties of the acetylcholine receptor in rat muscle. Dev. Biol. 81:324–331.

    PubMed  CAS  Google Scholar 

  135. Fishbach, G. D., and S. M. Schuetze. 1980. A post-natal decrease in acetylcholine channel open time at rat end-plates. J. Physiol. (London) 303:125–137.

    Google Scholar 

  136. Schuetze, S. M. 1980. The acetylcholine channel open time in chick muscle is not decreased following innervation. J. Physiol (London) 303:111–124.

    CAS  Google Scholar 

  137. Patrick, J., and S. Heinemann. 1982. Outstanding problems in acetylcholine receptor structure and regulation. Trends Neurosci. 5:300–302.

    CAS  Google Scholar 

  138. Hall, Z. W., B. W. Lubit, and J. H. Schwartz. 1981. Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90:789–792.

    PubMed  CAS  Google Scholar 

  139. Bloch, R. J., and Z. W. Hall. 1983. Cytoskeletal components of the vertebrate neuromuscular junction: Vinculin, alpha-actinin, and filamin. J. Cell Biol 97:217–223.

    PubMed  CAS  Google Scholar 

  140. Bloch, R. J. 1983. Acetylcholine receptor clustering in rat myo-tubes: Requirment for Ca2+ and effects of drugs which de-polymerize microtubules. J. Neurosci. 3:2670–2680.

    PubMed  CAS  Google Scholar 

  141. Porter, S., and S. C. Froehner. 1983. Characterization and localization of the Mr = 43, 000 proteins associated with acetylcholine receptor-rich membranes. J. Biol Chem. 258:10034–10040.

    PubMed  CAS  Google Scholar 

  142. Froehner, S. C., V. Gulbrandsen, C. Hyman, A. Y. Jeng, R. R. Neubig, and J. B. Cohen. 1981. Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43, 000 protein of Torpedo postsynaptic membranes. Proc. Natl. Acad. Sci. USA 78:5230–5234.

    PubMed  CAS  Google Scholar 

  143. Sealock, R. 1982. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic acid-mediated negative contrasting. J. Cell Biol. 92:514–522.

    PubMed  CAS  Google Scholar 

  144. Burden, S. J., R. L. DePalma, and G. S. Gottesman. 1983. Crosslinking of proteins in acetylcholine receptor-rich membranes: Association between the beta-subunit and the 43 kd sub-synaptic protein. Cell 35:687–692.

    PubMed  CAS  Google Scholar 

  145. Sanes, J. R., L. M. Marshall, and U. J. McMahan. 1978. Reinnervation of muscle fiber basal lamina after removal of myofibers: Differentiation of regenerating axons at original synaptic sites. J. Cell Biol. 78:176–198.

    PubMed  CAS  Google Scholar 

  146. Burden, S. J., P. B. Sargent, and U. J. McMahan. 1979. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J. Cell Biol 82:412–425.

    PubMed  CAS  Google Scholar 

  147. Carlson, S. S., K. M. Buckley, P. Caroni, and R. B. Kelly. 1983. Synaptic vesicles and the synaptic cleft contain an identical proteoglycan. Neurosci. Abstr. 9(part 2): 1028.

    Google Scholar 

  148. Katz, B., and S. Thesleff. 1957. A study of the “desensitization” produced by acetylcholine at the motor end-plate. J. Physiol (London) 138:63–80.

    CAS  Google Scholar 

  149. Lester, H. A., J. P. Changeux, and R. E. Sheridan. 1975. Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques. J. Gen. Phvsiol. 65:797–816.

    CAS  Google Scholar 

  150. Sheridan, R. E., and H. A. Lester. 1977. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques. J. Gen. Physiol. 70:187–219.

    PubMed  CAS  Google Scholar 

  151. Adams, P. R. 1975. An analysis of the dose-response curve at voltage-clamped frog-endplates. Pfluegers Arch. 360:145–153.

    CAS  Google Scholar 

  152. Adams, P. R. 1977. Relaxation experiments using bath-applied suberyldicholine. J. Physiol. (London) 268:271–289.

    CAS  Google Scholar 

  153. Neubig, R. R., and J. B. Cohen. 1980. Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times. Biochemistry 19:2770–2779.

    PubMed  CAS  Google Scholar 

  154. Hartzell, H. C., S. W. Kuffler, and D. Yoshikami. 1975. Postsynaptic potentiation: Interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J. Physiol. (London) 251:427–464.

    CAS  Google Scholar 

  155. Dreyer, F., and K. Peper. 1975. Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction. Nature (London) 253:641–643.

    CAS  Google Scholar 

  156. Dreyer, F., K. Peper, and R. Sterz. 1978. Determination of dose-response curves by quantitative iontophoresis at the frog neuromuscular junction. J. Physiol. (London) 281:395–419.

    CAS  Google Scholar 

  157. Hoffman, H. M., and V. E. Dionne. 1980. The Hill coefficient of the acetylcholine receptor dose-response relation is independent of membrane voltage and temperature. Soc. Neurosci. Abstr. 6:753.

    Google Scholar 

  158. Land, B. R., E. E. Salpeter, and M. M. Salpeter. 1980. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc. Natl Acad. Sci. USA 77:3736–3740.

    PubMed  CAS  Google Scholar 

  159. Magleby, K. L., and C. F. Stevens. 1972. A quantitative description of endplate currents. J. Physiol. (London) 223:173–197.

    CAS  Google Scholar 

  160. Sakmann, B., and E. Neher, eds. 1983. Single-Channel Recording. Plenum Press, New York.

    Google Scholar 

  161. Corey, D. P., and C. F. Stevens. 1983. Science and technology of patch-recording electrodes. In: Single-Channel Recording. B. 68.

    Google Scholar 

  162. Lester, H. A., and H. W. Chang. 1977. Response of acetylcholine receptors to rapid photochemically produced increases in agonist concentration. Nature (London) 266:373–374.

    CAS  Google Scholar 

  163. Nass, M. M., H. A. Lester, and M. E. Krouse. 1978. Response of acetylcholine receptors to photoisomerizations of bound agonist molecules. Biophys. J. 24:153–160.

    Google Scholar 

  164. Dionne, V. E., and C. F. Stevens. 1975. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: Resolution of a paradox. J. Physiol. (London) 251:245–270.

    CAS  Google Scholar 

  165. Adams, P. R. 1975. Kinetics of agonist conductance changes during hyperpolarization at frog endplates. Br. J. Pharmacol. 53:308–310.

    PubMed  CAS  Google Scholar 

  166. Sheridan, R. E., and H. A. Lester. 1975. Relaxation measurements on the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 72:3496–3500.

    PubMed  CAS  Google Scholar 

  167. Katz, B., and R. Miledi. 1970. Membrane noise produced by acetylcholine. Nature (London) 226:962–963.

    CAS  Google Scholar 

  168. Katz, B., and R. Miledi. 1972. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 224:665–699.

    CAS  Google Scholar 

  169. Anderson, C.R., and C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (London) 235:655–691.

    CAS  Google Scholar 

  170. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature (London) 260:799–802.

    CAS  Google Scholar 

  171. Colquhoun, D., and A. G. Hawkes. 1981. On the stochastic properties of single ion channels. Proc. R. Soc. London Ser. B 211:205–235.

    CAS  Google Scholar 

  172. Dionne, V. E., and M. D. Leibowitz. 1982. Acetylcholine receptor kinetics: A description from single channel currents at snake neuromuscular junctions. Biophys. J. 39:253–261.

    PubMed  CAS  Google Scholar 

  173. Gage, P. W., and R. N. McBurney. 1975. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of acetylcholine at the toad neuromuscular junction. J. Physiol. (London) 244:385–407.

    CAS  Google Scholar 

  174. Nelson, D. J., and F. Sachs. 1979. Single ionic channels observed in tissue-cultured muscle. Nature (London) 282:861–863.

    CAS  Google Scholar 

  175. Dionne, V. E., and R. L. Parsons. 1981. Characteristics of the acetylcholine-operated channel at twitch and slow fiber neuromuscular junctions of the garter snake. J. Physiol. (London) 310:145–158.

    CAS  Google Scholar 

  176. Dionne, V. E. 1981. The kinetics of slow muscle acetylcholine-operated channels in the garter snake. J. Physiol. (London) 310:159–190.

    CAS  Google Scholar 

  177. Colquhoun, D., and B. Sakmann. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature (London) 294:464–466.

    CAS  Google Scholar 

  178. Sine, S. M., and J. H. Steinbach. 1984. Activation of a nicotinic acetylcholine receptor. Biophys. J. 45:175–185.

    PubMed  CAS  Google Scholar 

  179. Leibowitz, M. D., and V. E. Dionne. 1984. Single-channel acetylcholine receptor kinetics. Biophys. J. 45:153–163.

    PubMed  CAS  Google Scholar 

  180. Horn, R., and J. Patlak. 1980. Single channel currents from excised patches of muscle membrane. Proc. Natl. Acad. Sci. USA 77: 6930–6934.

    PubMed  CAS  Google Scholar 

  181. Fenwick, E. M., A. Marty, and E. Neher. 1982. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J. Physiol. (London) 333:577–597.

    Google Scholar 

  182. Hamill, O. P., and B. Sakmann. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature (London) 294:962–963.

    Google Scholar 

  183. Trautmann, A. 1982. Curare can open and block ionic channels associated with cholinergic receptors. Nature (London) 298:272–275.

    CAS  Google Scholar 

  184. Auerbach, A., and F. Sachs. 1982. Flickering of a nicotinic ion channel to a subconductance state. Biophys. J. 42:1–10.

    Google Scholar 

  185. Auerbach, A., and F. Sachs. 1984. Single-channel currents from acetylcholine receptors in embryonic chick muscle. Biophys. J. 45:187–198.

    PubMed  CAS  Google Scholar 

  186. Brehm, P., R. Kullberg, and F. Moody-Corbett. 1984. Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol. (London) 350:631–648.

    CAS  Google Scholar 

  187. Kullberg, R. W., P. Brehm, and J. H. Steinbach. 1981. Nonjunc-tional acetylcholine receptor channel open time decreases during development of Xenopus muscle. Nature (London) 289:411–413.

    CAS  Google Scholar 

  188. Brehm, P., J. H. Steinbach, and Y. Kidokoro. 1982. Channel open time of acetylcholine receptors on Xenopus muscle cells in dissociated cell culture. Dev. Biol. 91:93–102.

    PubMed  CAS  Google Scholar 

  189. Sakmann, B., J. Patlak, and E. Neher. 1980. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature (London) 286:71–73.

    CAS  Google Scholar 

  190. Adams, P. R., and B. Sakmann. 1978. Decamethionium both opens and blocks end-plate channels. Proc. Natl. Acad. Sci. USA 75:2994–2998.

    PubMed  CAS  Google Scholar 

  191. Huang. L. Y., W. A. Catterall, and G. Ehrenstein. 1978. Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells. J. Gen. Physiol. 71:397–410.

    PubMed  CAS  Google Scholar 

  192. Gage, P. W., and D. Van Helden. 1979. Effects of permeant monovalent cations on end-plate channels. J. Physiol. (London) 288:509–528.

    CAS  Google Scholar 

  193. Adams, D. J., T. M. Dwyer, and B. Hille. 1980. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75:493–510.

    PubMed  CAS  Google Scholar 

  194. Lewis, C. A., and C. F. Stevens. 1983. Acetylcholine receptor channel ionic selectivity: Ions experience an aqueous environment. Proc. Natl. Acad. Sci. USA 80:6110–6113.

    PubMed  CAS  Google Scholar 

  195. Lewis, C. A., and C. F. Stevens. 1979. Mechanism of ion permeation through channels in a postsynaptic membrane. In: Membrane Transport Processes, Volume 3. Stevens, C. F. and R. W. Tsien, eds. Raven Press, New York. pp. 133–151.

    Google Scholar 

  196. Lewis, C.A. 1979. The ion concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (London) 286: 417–445.

    CAS  Google Scholar 

  197. Patlak, J. B., K. A. F. Gration, and P. N. R. Usherwood. 1979. Single glutamate-activated channels in locust muscle. Nature (London) 278:643–645.

    CAS  Google Scholar 

  198. Cull-Candy, S. G., R. Miledi, and I. Parker. 1980. Single glutamate-activated channels recorded from locust muscle fibres with perfused patch-clamp electrodes. J. Physiol. (London) 321:195–210.

    Google Scholar 

  199. Gration, K. A. F., J. J. Lampert, R. L. Ramsey, R. P. Rand, and P. N. R. Usherwood. 1981. Agonist potency determination by patch clamp analysis of single glutamate receptors. Brain Res. 230:400–405.

    PubMed  CAS  Google Scholar 

  200. Gration, K. A. F., J. J. Lambert, R. Ramsey, and P. N. R. Usherwood. 1981. Non-random openings and concentration-dependent lifetimes of glutamate-gated channels in muscle membrane. Nature (London) 291:423–425.

    CAS  Google Scholar 

  201. Gration, K. A. F., R. L. Ramsey, and P. N. R. Usherwood. 1983. Analysis of single-channel data from glutamate receptor-channel complexes on locust muscle. In: Single-Channel Recording. B. Sakmann and E. Neher, eds. Plenum Press, New York. pp. 377–388.

    Google Scholar 

  202. Cull-Candy, S. G., and I. Parker. 1982. Rapid kinetics of single glutamate-receptor channels. Nature (London) 295:410–412.

    CAS  Google Scholar 

  203. Gration, K. A. F., J. J. Lambert, R. L. Ramsey, R. P. Rand, and P. N. R. Usherwood. 1982. Closure of membrane channels gated by glutamate receptors may be a two-step process. Nature (London) 295:599–601.

    CAS  Google Scholar 

  204. Nowak, L., P. Bregestovski, P. Ascher, A. Herbet, and A. Pro-chiantz. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature (London) 307:462–465.

    CAS  Google Scholar 

  205. Jackson, M. B., H. Lecar, D. A. Mathers, and J. L. Barker. 1982. Single channel currents activated by gamma-aminobutyric acid, muscimol, and (—)pentobarbital in cultured mouse spinal neurons. J. Neurosci. 2:889–894.

    PubMed  CAS  Google Scholar 

  206. Redmann, G. A., J. L. Barker, and H. Lecar. 1983. Single mus-cimol-activated ion channels show voltage-sensitive kinetics in cultured mouse spinal cord neurons. Soc. Neurosci. Abstr. 9:507.

    Google Scholar 

  207. Sakmann, B., O. P. Hamill, and J. Bormann. 1983. Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitters GABA and glycine in mammalian spinal neurons. J. Neural Trans. Suppl. 18:83–95.

    CAS  Google Scholar 

  208. Bormann, J., B. Sakmann, and W. Seifert. 1983. Isolation of GABA-activated single-channel Cl~ currents in the soma membrane of rat hippocampal neurones. J. Physiol. (London) 341:9P-10P.

    Google Scholar 

  209. Hamill, O. P., J. Bormann, and B. Sakmann. 1983. Activation of multiple-conductance state chloride channels in spinal neurons by glycine and GABA. Nature (London) 305:805–808.

    CAS  Google Scholar 

  210. Sakmann, B., A. Noma, and W. Trautwein. 1983. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature (London) 303:250–253.

    CAS  Google Scholar 

  211. Kehoe, J., and A. Marty. 1980. Certain slow synaptic responses: Their properties and possible underlying mechanisms. Annu. Rev. Biophys. Bioeng. 9:437–465.

    PubMed  CAS  Google Scholar 

  212. Hartzell, H. C. 1981. Mechanisms of slow postsynaptic potentials. Nature (London) 291:539–544.

    CAS  Google Scholar 

  213. Siegelbaum, S. A., J. S. Camardo, and E. R. Kandel. 1982. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature (London) 299:413–417.

    CAS  Google Scholar 

  214. Miledi, R., I. Parker, and K. Sumikawa. 1983. Recording of single gamma-aminobutyrate and acetylcholine activated receptor channels translated by exogenous mRNA in Xenopus oocytes. Proc. R. Soc. London Ser. B 218:481–484.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Aldrich, R.W., Dionne, V.E., Hawrot, E., Stevens, C.F. (1987). Ion Transport through Ligand-Gated Channels. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Transport Processes in Organized Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5404-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5404-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42698-8

  • Online ISBN: 978-1-4684-5404-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics