Skip to main content

Properties of Ionic Channels in Excitable Membranes

  • Chapter
Membrane Transport Processes in Organized Systems

Abstract

Excitable cells respond to appropriate stimuli with changes in their transmembrane potential. We will briefly review the origin of the membrane potential and the ways that it can be modified. Two main classes of excitability will be discussed: chemical excitability, in which the stimulus is a chemical transmitter released by another cell; and electrical excitability, in which the stimulus is a change in the membrane potential itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, J. 1902. Untersuchungen zur Thermodynamic der bioelektrischen Ströme. Pfluegers Arch. Gesamte Physiol. 92:521–562.

    Article  CAS  Google Scholar 

  2. Goldman, D. E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  3. Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108:37–77.

    CAS  Google Scholar 

  4. Coombs, J. S., J. C. Eccles, and P. Fatt. 1955. The specific ion conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (London) 130:326–373.

    CAS  Google Scholar 

  5. DuBois-Reymond, E. 1843. Untersuchungen über thierische Elec-tricitat, Volume 1. Reimer, Berlin.

    Google Scholar 

  6. Loewi, O. 1921. Über humorale Übertragbarkeit der Herznerven-wirkung. Pfluegers Arch. Gesamte Physiol. 189:239–247.

    Article  Google Scholar 

  7. Loewi, O., and E. Navratil. 1926. Über humorale Übertragar-barkeit der Herzenerve Wirkung. X. Mittelung. Über das Schicksal des Vagusstoffs. Pfluegers Arch. Gesamte Physiol. 214:678–688.

    Article  CAS  Google Scholar 

  8. Dale, H. H., W. Feldberg, and M. Vogt. 1936. Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (London) 86:353–380.

    CAS  Google Scholar 

  9. Fatt, P., and B. Katz. 1951. An analysis of the end-plate potential recorded with an intercellular electrode. J. Physiol. (London) 115:320–370.

    CAS  Google Scholar 

  10. Takeuchi, A., and N. Takeuchi. 1960. On the permeability of the end-plate membrane during the action of transmitter. J. Physiol. (London) 154:52–67.

    CAS  Google Scholar 

  11. Cole, K. S., and H.J. Curtis. 1939. Electric impedance of the squid axon during activity. J. Gen. Physiol. 22:649–670.

    Article  PubMed  CAS  Google Scholar 

  12. Cole, K. S. 1949. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3:253–258.

    CAS  Google Scholar 

  13. Hodgkin, A. L., and A. F. Huxley. 1951. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (London) 116:449–472.

    Google Scholar 

  14. Hodgkin, A. L., and A. F. Huxley. 1951. The components of membrane conductance in the giant axon of Loligo. J. Physiol. (London) 116:473–496.

    Google Scholar 

  15. Hodgkin, A. L., and A. F. Huxley. 1951. The dual effect of membrane potential on the sodium conductance of Loligo. J. Physiol. (London) 116:497–506.

    Google Scholar 

  16. Hodgkin, A. L., and A. F. Huxley. 1951. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.

    Google Scholar 

  17. Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  18. Popot, J. L., and J. P. Changeux. 1984. Nicotinic receptor of acetylcholine: Structure of digomeric integral membrane protein. Physiol. Rev. 64:1162–1239.

    PubMed  CAS  Google Scholar 

  19. Agnew, W. S. 1984. Voltage-regulated sodium channel molecules. Ann. Rev. Physiol. 46:517–530.

    Article  CAS  Google Scholar 

  20. Tsien, R. W., and D. Noble. 1969. A transition state theory approach to the kinetics of conductance changes in excitable membranes. J. Membrane Biol. 1:248–273.

    Article  Google Scholar 

  21. Ehrenstein, G., R. Blumenthal, R. Latorre, and H. Lecar. 1974. Kinetics of opening and closing of individual EIM channels in lipid bilayers. J. Gen. Physiol. 63:707–721.

    Article  PubMed  CAS  Google Scholar 

  22. Larson, H. J. 1974. Introduction to Probability Theory and Statistical Inference. Wiley, New York.

    Google Scholar 

  23. Armstrong, C. M., and F. Bezanilla. 1973. Currents relating to movement of the gating particles of the sodium channel. Nature (London) 242:459–461.

    Article  CAS  Google Scholar 

  24. Armstrong, C. M., and R. S. Croop. 1982. Simulation of Na channel inactivation by thiazin dyes. J. Gen. Physiol. 80:641–662.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor, R. E., and F. Bezanilla. 1983. Sodium and gating current time shifts resulting from changes in initial conditions. J. Gen. Physiol. 81:773–784.

    Article  PubMed  CAS  Google Scholar 

  26. Stimers, J. R., F. Bezanilla, and R. E. Taylor. 1985. Sodium channel activation in squid giant axon: Steady-state properties. J. Gen. Physiol. 85:65–82.

    Article  PubMed  CAS  Google Scholar 

  27. Bezanilla, F., J. M. Fernandez, and R. E. Taylor. 1982. Distribution and kinetics of membrane dielectric polarization. I. Long-term inactivation of gating currents. J. Gen. Physiol. 79:21–40.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez, J. M., F. Bezanilla, and R. E. Taylor. 1982. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J. Gen. Physiol. 79:41–67.

    Article  PubMed  CAS  Google Scholar 

  29. Bezanilla, F., and C. M. Armstrong. 1977. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70:549–556.

    Article  PubMed  CAS  Google Scholar 

  30. Armstrong, C. M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:557–590.

    Article  Google Scholar 

  31. Armstrong, C.M., and W. F. Gilly. 1979. Fast and slow steps in the activation of sodium channels. J. Gen. Physiol. 74:691–711.

    Article  PubMed  CAS  Google Scholar 

  32. Bezanilla, F., and R. E. Taylor. 1982. Voltage-dependent gating of sodium channels. In: Abnormal Nerves and Muscles as Impulse Generators. W. J. Culp and J. Ochoa, eds. Oxford University Press, London, pp. 62–79.

    Google Scholar 

  33. Goldman, L., and C. L. Schauf. 1972. Inactivation of the sodium current in Myxicola giant axons: Evidence of coupling to the activation process. J. Gen. Physiol. 59:659–675.

    Article  PubMed  CAS  Google Scholar 

  34. Bezanilla, F., and C. M. Armstrong. 1974. Gating currents of the sodium channels: Three ways to block them. Science 183:753–754.

    Article  PubMed  CAS  Google Scholar 

  35. Cahalan, M. D., and W. Aimers. 1979. Block of sodium conductance and gating current in squid axons poisoned with quaternary strychnine. Biophys. J. 27:57–74.

    Article  PubMed  CAS  Google Scholar 

  36. Yeh, J. Z., and C. M. Armstrong. 1978. Immobilization of gating charge by a substance that simulates inactivation. Nature (London) 273:387–389.

    Article  CAS  Google Scholar 

  37. Yeh, J. Z. 1982. A pharmacological approach to the structure of the Na channel in squid axon. In: Proteins in the Nervous System: Structure and function. B. Haber, J. R. Perez-Polo, and J. D. Coulter, eds. Liss, New York. pp. 17–50.

    Google Scholar 

  38. DeFelice, L. J. 1981. Introduction to Membrane Noise. Plenum Press, New York.

    Book  Google Scholar 

  39. Conti, F., L. J. DeFelice, and E. Wanke. 1975. Potassium and sodium in current noise in the membrane of the squid giant axon. J. Physiol. (London) 248:45–82.

    CAS  Google Scholar 

  40. Llano, I., and F. Bezanilla. 1982. Analysis of sodium current fluctuations in the cut-open axon. J. Gen. Physiol. 83:133–142.

    Article  Google Scholar 

  41. Levis, R. A., F. Bezanilla, and R. M. Torres. 1984. Estimate of the squid axon sodium channel conductance with improved frequency response. Biophys. J. 45:11a.

    Google Scholar 

  42. Conti, F., B. Hille, B. Neumke, W. Nonner, and R. Stämpfli. 1976. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J. Physiol. (London) 262:699–727.

    CAS  Google Scholar 

  43. Sigworth, F. J. 1980. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (London) 307:97–129.

    CAS  Google Scholar 

  44. Patlak, J., and R. Horn. 1982. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J. Gen. Physiol. 79:333–351.

    Article  PubMed  CAS  Google Scholar 

  45. Oxford, G. S., C. H. Wu, and T. Narahashi. 1978. Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide. J. Gen. Physiol. 71:227–247.

    Article  PubMed  CAS  Google Scholar 

  46. Aldrich, R. W., D. P. Corey, and C. F. Stevens. 1983. A rein-terpretation of mammalian sodium channel gating based on single channel recording. Nature (London) 306:436–441.

    Article  CAS  Google Scholar 

  47. Gilly, W. F., and C. M. Armstrong. 1982. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J. Gen. Physiol. 79:965–996.

    Article  PubMed  CAS  Google Scholar 

  48. Conti, F., and E. Neher. 1980. Single channel recordings of K currents in squid axons. Nature (London) 285:140–143.

    Article  CAS  Google Scholar 

  49. White, M. M., and F. Bezanilla. 1985. Activation of squid axon K + channels: Ionic and gating current studies. J. Gen. Physiol. 85:539–554.

    Article  PubMed  CAS  Google Scholar 

  50. Bezanilla, F., M. M. White, and R. E. Taylor. 1982. Gating currents associated with potassium channel activation. Nature (London) 296:657–659.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Bezanilla, F., White, M.M. (1987). Properties of Ionic Channels in Excitable Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Transport Processes in Organized Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5404-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5404-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42698-8

  • Online ISBN: 978-1-4684-5404-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics