Skip to main content

Computer Experiments on Electron-Ion Recombination in an Ambient Medium: Gases, Plasmas and Liquids

  • Chapter
Recent Studies in Atomic and Molecular Processes

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Concern over the rate at which ions recombine with other ions or with electrons in an ambient medium followed very shortly the discovery of the electron itself in 1896. The papers published on recombination in the ninety years since are legion. This is largely due to the wide range of phenomena in which charged particle recombination is found to be important. Examples include the upper atmosphere, vapor lamps, lasers, and radiation chemistry. The importance of recombination lies in its frequently being the rate limiting step in the removal of charged particles or in the formation of important neutral species in a system. Ionic recombination processes can be grouped into the following categories: 2-body ion-ion mutual neutralization, 3-body ion-ion recombination, 2-body electron-ion dissociative recombination, 2-body electron-ion dielectronic recombination, 2-body electron-ion radiative recombination, 3-body electron-ion collisional radiative recombination, and 3-body neutral assisted electron-ion recombination. Much of the progress in thoretical understanding of recombination processes is attributable to Sir David Bates, whose first publication and at least fifty five of his more than two hundred sixty succeeding papers have dealt with recombination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, D. A., Sennhauser, E. S., Warman, J. M., and Sowada, U., 1982, The electron-ion recombination coefficient in CO2 and NH3. Deviations from a linear density dependence at elevated pressures, Chem. Phys. Lett., 86: 281.

    Google Scholar 

  • Ascarelli, G., 1986, Calculation of the mobility of electrons injected in liquid methane, Phys. Rev. B, 34: 7329.

    Google Scholar 

  • Atrazhev, V. M., and Yakubov, I. T., 1981, Electron mobility in liquids and dense gases, High Temperature (USSR), 18: 969.

    Google Scholar 

  • Bardsley, J. N., and Biondi, M. A., 1970, Dissociative recombination, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and I. Esterman, eds., Academic Press, New York.

    Google Scholar 

  • Bardsley, J. N., and Wadehra, J. M., 1980, Monte Carlo simulation of three-body ion-ion recombination, Chem. Phys. Lett., 72: 477.

    Google Scholar 

  • Basak, S. and Cohen, M., 1979, Deformation-potential theory for the mobility of electrons in liquid argon, Phys. Rev. B, 20: 3404.

    Article  ADS  Google Scholar 

  • Bates, D. R., 1975, Ionic recombination in a high density ambient gas, J. Phys. B, 8: 2722.

    MathSciNet  Google Scholar 

  • Bates, D. R., 1979a, Aspects of recombination, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and B. Bederson, eds., Academic Press, New York.

    Google Scholar 

  • Bates, D. R., 1979b, Electron-ion recombination in ambient electron and neutral gases, in: “The Physics of Ionized Gases,” R. K. Janev, ed., Institute of Physics, Belgrade.

    Google Scholar 

  • Bates, D. R., 1980a, Classical theory of electron-ion recombination in an ambient gas, J. Phys. B, 13: 2587.

    ADS  Google Scholar 

  • Bates, D. R., 1980b, Universal curve for ter-molecular ionic recombination coefficients, Chem. Phys. Lett., 75: 409.

    ADS  Google Scholar 

  • Bates, D. R., 1981a, Electron-ion recombination in an ambient molecular gas, J. Phys. B, 14: 3525.

    Google Scholar 

  • Bates, D. R., 1981b, Effect of inelastic collisions on rate of termolecular ionic recombination, J. Phys. B, 14: 2853.

    ADS  Google Scholar 

  • Bates, D. R., 1982, Electron-ion collisional dissociative recombination at high ambient ammonia densities, Chem. Phys. Lett., 89: 294.

    ADS  Google Scholar 

  • Bates, D. R., 1983, Termolecular ionic recombination at high ambient gas density, J. Phys. B, 16: L295.

    Google Scholar 

  • Bates, D. R., 1985, Ion-ion recombination in an ambient gas, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and B. Bederson, eds., Academic Press, New York.

    Google Scholar 

  • Bates, D. R., and Khare, S. P., 1965, Recombination of positive ions and electrons in a dense neutral gas, Proc. Phys. Soc., 85: 231.

    ADS  Google Scholar 

  • Bates, D. R., Malaviya, V., and Young, N. A., 1971, Electron-ion recombination in a dense molecular gas, Proc. Roy. Soc. Lond. A, 320: 437.

    ADS  Google Scholar 

  • Bates, D. R., and Mendas, I., 1978, Ionic recombination in an ambient gas II. Computer experiment with specific allowance for binary recombination, Proc. Roy. Soc. Lond. A, 359: 287.

    ADS  Google Scholar 

  • Bates, D. R., and Mendas, I., 1982, Rate coefficients for ter-molecular ionic recombination, Chem. Phys. Lett., 88: 528.

    ADS  Google Scholar 

  • Berlin, Y. A., Nyikos, L., and Schiller, R., 1978, Mobility of localized and quasifree excess electrons in liquid hydrocarbons, J. Chem. Phys., 69: 2401.

    ADS  Google Scholar 

  • Braglia, G. L., and Dallacasa, V., 1982, Theory of electron mobility in dense gases, Phys. Rev. A, 26: 902.

    Google Scholar 

  • Christophorou, L. G., and McCorkle, D. L., 1976, Experimental evidence for the existence of a Ramsauer-Townsend minimum in liquid CH4 and liquid Ar (Kr and Xe), Chem. Phys. Lett., 42: 533.

    Google Scholar 

  • Davis, H. T., Schmidt, L. D., and Minday, R. M., 1971, Kinetic theory of excess electrons in polyatomic gases, liquids, and solids, Phys. Rev. A, 3: 1027.

    Google Scholar 

  • Ferch, J., Granitza, B., and Raith, W., 1985, The Ramsauer minimum of methane, J. Phys. B, 18: L445.

    Google Scholar 

  • Flannery, M. R., 1976, Ionic recombination, in: “Atomic Processes and Applications,” P. G. Burke and B. L. Moiseiwitsch, eds., North-Holland, Amsterdam.

    Google Scholar 

  • Flannery, M. R., 1982, Ion-ion recombination in high pressure plasmas, in: “Applied Atomic Collision Physics V. 3: Gas Lasers,” E. W. McDaniel and W. L. Nighan, eds., Academic Press, New York.

    Google Scholar 

  • Frost, L. S., and Phelps, A. V., 1962, Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients, Phys. Rev., 127: 1621.

    Google Scholar 

  • Gee, N., and Freeman, G. R., 1986, Geminate recombination of electrons in liquid methane, J. Chem. Phys., 85: 1206.

    ADS  Google Scholar 

  • Green, A. E. S., and Sawada, T., 1972, Ionization cross sections and secondary electron distributions, J. Atmos. Terrest. Phys., 34: 1719.

    ADS  Google Scholar 

  • Hake, R. D., and Phelps, A. V., 1967, Momentum transfer and inelastic collision cross sections for electrons in 02, CO, and CO2,” Phys. Rev., 158: 70.

    Google Scholar 

  • Kline, L. E., 1982, Performance predictions for electron-beam controlled on/off switches, IEEE Trans. on Plasma Sci., 10: 224.

    ADS  Google Scholar 

  • Langevin, P., 1903, Ann. de Chim. et de Phys., 28:433.

    Google Scholar 

  • Lin, S. L., and Bardsley, J. N., 1978, The null-event method in computer simulation, Comput. Phys. Commun., 15: 161.

    Google Scholar 

  • Littlewood, I. M., Cornell, M. C., Clark, B. K., and Nygaard, K. J., 1983, Two- and three-body electron-ion recombination in carbon dioxide, J. Phys. D, 16: 2113.

    ADS  Google Scholar 

  • Loeb, L. B., 1955, “Basic Processes in Gaseous Electronics,” University of California Press, Berkeley.

    Google Scholar 

  • Massey, H. S. W., and Gilbody, H. B., 1974, “Electronic and Ionic Impact Phenomena IV,” Clarendon Press, Oxford.

    Google Scholar 

  • Morgan, W. L., and Bardsley, J. N., 1983, Monte Carlo simulation of electron-ion recombination at high pressure, Chem. Phys. Lett., 96: 93.

    ADS  Google Scholar 

  • Morgan, W. L., 1984a, Electron-ion recombination in water vapor, J. Chem. Phys., 80: 4564.

    Google Scholar 

  • Morgan, W. L., 1984b, Molecular dynamics simulation of electron-ion recombination in a nonequilibrium, weakly ionized plasma, Phys. Rev A, 30: 979.

    Google Scholar 

  • Morgan, W. L., 1986, Molecular dynamics simulation of geminate recombination by electrons in liquid methane, J. Chem. Phys., 84: 2298.

    Google Scholar 

  • Morgan, W. L., Bardsley, J. N., Lin, J., and Whitten, B. L., 1982, Theory of ion-ion recombination, Phys. Rev. A, 26: 1696.

    Google Scholar 

  • Nakamura, Y., Shinsaka, K., and Hatano, Y., 1983, Electron mobilities and electron-ion recombination rate constants in solid, liquid, and gaseous methane, J. Chem. Phys., 78: 5820.

    ADS  Google Scholar 

  • Onsager, L., 1938, Initial recombination of ions,” Phys. Rev., 54: 554.

    Google Scholar 

  • Percival, I. C., 1982, Collisions of charged particles with highly excited atoms, in: “Atomic and Molecular Collision Theory,” F. A. Gianturco, ed., Plenum Press, New York.

    Google Scholar 

  • Pitchford, L. C., ONeil, S. V., and Rumble, J. R., 1981, Extended Boltzmann analysis of electron swarm experiments, Phys. Rev. A, 23: 294.

    Google Scholar 

  • Scofield, P., 1973, Computer simulation studies of the liquid state, Comput. Phys. Commun., 5: 17.

    ADS  Google Scholar 

  • Sennhauser, E. S., and Armstrong, D. A., 1978, Ion neutralization rates in gaseous ammonia, Radiat. Phys. Chem., 11: 17.

    Google Scholar 

  • Sennhauser, E. S., Armstrong, D. A., and Warman, J. M., 1980, The temperature dependence of three-body electron ion recombination in gaseous H20, NH3, and CO2, Radiat. Phys. Chem., 15: 479.

    Google Scholar 

  • Thomson, J. J., 1924, Phil. Mag., 47:337.

    Google Scholar 

  • Warman, J. M., 1981, Estimates of electron thermalization times for dielectric liquids from drift velocity data, Radiat. Phys. Chem., 17: 21

    ADS  Google Scholar 

  • Warman, J. M., Sennhauser, E. S., and Armstrong, D. A., 1979, Three body electron-ion recombination in molecular gases, J. Chem. Phys., 70: 995.

    ADS  Google Scholar 

  • Whitten, B. L., Morgan, W. L., and Bardsley, J. N., 1983, Mutual neutralization in rare gas halides, J. Chem. Phys., 78: 1339.

    ADS  Google Scholar 

  • Ziman, J. M., 1979, “Models of Disorder,” Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Morgan, W.L. (1987). Computer Experiments on Electron-Ion Recombination in an Ambient Medium: Gases, Plasmas and Liquids. In: Kingston, A.E. (eds) Recent Studies in Atomic and Molecular Processes. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5398-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5398-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5400-0

  • Online ISBN: 978-1-4684-5398-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics