Skip to main content

The Role of Atomic and Molecular Processes in the Critical Ionization Velocity Theory

  • Chapter
Recent Studies in Atomic and Molecular Processes

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

In formulating a theory for the structure of the solar system (meaning the formation of the planets with their individual satellites) Alfvén (1954; Alfvén and Arrhenius, 1975) postulated a simple intuitive concept, the Critical Ionization Velocity (CIV), to explain the condensation of matter in the early stages of the formation of the solar system. Since the original suggestion of CIV, it has been invoked to explain such diverse phenomena as cometary plasma (Formisano et al., 1982; Galeev et al.,1986) and the shuttle glow (Papadopoulos, 1984). Evidence, particularly from space experiments, has been reviewed recently by Newell (1985). Other reviews (e.g. Sherman, 1973) have emphasized the plasma (the collective) aspects of the theory. This review attempts to provide a transition from the collective aspects of the plasma treatments to the microscopic (collisional) implictions of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., 1984, Theory for the Critical Ionization Velocity Phenomenon, Planet. Space Sci., 32:903.

    Article  ADS  Google Scholar 

  • Abe, T., and Machida, S., 1985, Production of High Energy Electrons Caused by Counterstreaming Ion Beams in an External Magnetic Field, Phys. Fluids, 28:1178.

    Article  ADS  Google Scholar 

  • Alfvén. H., 1954, The Origin of the Solar System, Oxford U. P., Oxford.

    Google Scholar 

  • Alfvén, H., and Arrhenius, G., 1975, Structure and Evolutionary History of the Solar System, Reidel, Dordrecht.

    Google Scholar 

  • Alfvén, H., 1960, Collision Between a Nonionized Gas and a Magnetized Plasma, Revs. Mod. Phys., 32:710.

    ADS  Google Scholar 

  • Axnäs, I., 1972, Experimental Investigation of an Ionizing Wave in a Coaxial Plasma Gun, TRITA-EPP-72–31, Report from the Royal Institute of Technology, Stockhom, Sweden.

    Google Scholar 

  • Axnäs, I., 1978a, Experimental Investigation on the Critical Ionization Velocity in Gas Mixtures, Astrophys. Space Sci., 55:139.

    Article  ADS  Google Scholar 

  • Axnäs, I., 1978b, Experimental Comparison of the Critical Ionization Velocity in Atomic and Molecular Gases, Report from Royal Institute of Technology, Tritta-EPP-78–04.

    Google Scholar 

  • Axnäs, I., 1980, Some Necessary Conditions for a Critical Velocity Intaction Between the Ionospheric Plasma and a Xenon Cloud, Geophys. Res. Lett., 7:933.

    Google Scholar 

  • Baker, D. A., Hammel, J.E., and Ribe, F., 1961, Rotating Plasma Experiments. I. Hydromagnetics Properties, Phys. Fluids, 4:1534.

    Article  ADS  Google Scholar 

  • Baker, D. A., and Hammel, J. E., 1961, Rotating Plasma Experiments. H. Energy Measurements and the Velocity Limiting Effect, Phys. Fluids, 4: 1549.

    Article  ADS  Google Scholar 

  • Bates, D. R., 1979, Aspects of Recombination, in Advances in Atomic and Molecular Physics, Vol. 15, Edited by D. R. Bates, Academic Press, NY, 235–261.

    Google Scholar 

  • Bates, D. R., and Dalgarno, A., 1962, Electronic Recombination, in Atomic and Molecular Processes, Edited by D. R. Bates, Academic Press, NY, 245.

    Google Scholar 

  • Bates, D. R., Kingston, A. E., and McWhirter, R. W. P. ,1962a, Recombination Between Electrons and Atomic Ions. I. Optically Thin Plasmas, Proc. Roy. Soc. (London), A267:297.

    Google Scholar 

  • Bates, D. R., Kingston, A. E., and McWhirter, R. W. P., 1962b, Recombination Between Electrons and Atomic Ions. II. Optically Thick Plasmas, Proc. Roy. Soc. (London), A270:155.

    ADS  Google Scholar 

  • Bowers, M. T., Kemper, P. R., and Laudenslager, 1974, Reactions of Ions in Excited Electronic States: (N2+.)* + N2 ---> N +3 + N, J. Chem. Phys., 61:4394.

    Article  ADS  Google Scholar 

  • Brenning, N., 1980, Electron Temperature Measurements in Low-Density Plasmas by Helium Spectroscopy, J. Quant. Spectrosc. Rad. Transfer, 24:293.

    Article  ADS  Google Scholar 

  • Danielsson, L., 1970, Experiment on the Interaction Between a Plasma and a Neutral Gas, Phys. Fluids, 13:2288.

    Article  ADS  Google Scholar 

  • Danielsson, L., 1973, Review of the Critical Velocity on Gas Plasma Interction.I.Experimental Observations, Astrophys. Space Sci., 24:459.

    Article  ADS  Google Scholar 

  • Danielsson, L., and Brenning, N., 1975, Experiment on the Interaction Between a Plasma and a Neutral Gas. II., Phys. Fluids, 18:661.

    Article  ADS  Google Scholar 

  • Deehr, C. S.,Wescott, E. M., Stenback-Nielsen, H., Romick, G. J., Hallinan, T. J., and Föppl, H., 1982, A Critical Velocity Interaction Between

    Google Scholar 

  • Fast Barium and Strontium Atoms and the Terrestrial Ionospheric Plasma, Geophys. Res. Lett., 9:195.

    Google Scholar 

  • Dunn, G. H., Belie, D. S., Morgan, T. J., Mueller, D. W., and Timmer, C., 1984, Dielectronic Recombination of Some Single-Charge Ions, in Electronic and Atomic Collisions, Edited by J. Eichler, I. V. Hertel, and N. Stollerhoft, Elsevier, Amsterdam, 809–817.

    Google Scholar 

  • Fahleson, U. V., 1961, Experiments with Plasma Moving Through Neutral Gas, Phys. Fluids, 4:123.

    Article  ADS  Google Scholar 

  • Formisano, V., Galeev, A. A., and Sagdeev, R. Z., 1982, The Role of the Critical Ionization Velocity Phenomena in the Production of Inner Coma Cometary Plasma, Planet. Space Sci., 30:491.

    Article  ADS  Google Scholar 

  • Galeev, A. A., Gringauz, K. I., Klimov, S. I., Remizov, A. P., Sagdeev, R. Z., Savin, S. P., Sokolov, A. Yu., and Verigin, M. I., 1986, Critical Ionization Velocity Effects in the Inner Coma of Comet Halley: Measurements by Vega-2, Geophys. Res. Lett., 13:845.

    Google Scholar 

  • Haerendel, G., 1982, Alfvén’s Critical Velocity Effect Tested in Space, Z. Naturforschung, A37:728.

    ADS  Google Scholar 

  • Kieffer, L. J., and Dunn, G. H., 1966, Electron Impact Ionization Cross Section Data: Atoms, Atomic Ions, and Diatomic Molecules. I. Experimental Data, Revs. Mod. Phys., 38:1.

    Google Scholar 

  • Kelley, M.C., Pfaff, R. F., and Haerendel, G., 1986, Electric Field Measurements During the Condor Critical Velocity Experiment, J. Geophys.Res., A91:9939.

    Article  ADS  Google Scholar 

  • Lai, S., McNeil, W. J., and Murad, E., Work in Progress.

    Google Scholar 

  • Machida, S., Abe, T., and Terasawa, T., 1985, Computer Simulation of Critical Velocity Ionization, Phys. Fluids, 27:1928.

    Article  ADS  Google Scholar 

  • Machida, S., and Goertz, C. K., 1986, A Simulation Study of the Critical Ionization Velocity Process, J. Geophys. Res., A91:11965.

    Article  ADS  Google Scholar 

  • Maier, II, W. B., 1971, Reactions Between N2+ and N2, J. Chem. Phys., 55: 2699.

    Google Scholar 

  • Maier, II, W. B., 1974, Reactions Between Isotopically Labeled N2+ and N2 for Primary Ion Energies Below 45 eV, J. Chem. Phys., 61:3459.

    Article  ADS  Google Scholar 

  • Mattoo, S. K., and Venkataramani, N., 1980, On the Threshold Velocity in the Interaction Between a Magnetized Plasma and a Neutral Gas, Phys.Lett., 76A:257.

    ADS  Google Scholar 

  • McBride, J. B., Ott, E., Boris, J. P., and Orens, J. H., 1972, Theory and Simulation of Turbulent Heating by Modified Two-Stream Instability, Phys. Fluids, 15:2367.

    Article  ADS  Google Scholar 

  • McGowan, J. W., and Mitchell, J. B. A., Electron Molecular Positive Ion Recombination, in Electron-Molecule Interactions and Their Applications, Vol. 2, Edited by L.G. Christophorou, Academic Press, Orlando, FL, 65.

    Google Scholar 

  • Möbius, E. Boswell, R. W., Piel, A., and Henry, D., 1979, A Spacelab Experi ment on the Critical Ionization Velocity, Geophys. Res. Lett., 6:29.

    Google Scholar 

  • Murad, E., Lai, S. T., and Stair, Jr., A. T., 1986, A Proposed Experiment to Study the Critical Ionization Velocity Theory in Space, J. Geophys. Res., A91:1O188.

    Google Scholar 

  • Murad, E., and Lai, S., 1986, Effect of Dissociative Electron-Ion Recombination on the Propagation of Critical Ionization Dishcarges, J. Geophys. Res., A91:13745.

    Article  ADS  Google Scholar 

  • Newell, P. T., 1985, Review of the Critical Ionization Velocity Effect in Space, Revs. Geophys., 23:93.

    Google Scholar 

  • Newell, P. T., and Torbert, R. B., 1985, Competing Processes in Ba and Sr Injection Critical Ionization Velocity Experiments, Geophys. Res. Lett., 12:835.

    Google Scholar 

  • Papadopoulos, K., 1984, On the Shuttle Glow (the Plasma Alternative), Radio Science, 19:571.

    Article  ADS  Google Scholar 

  • Rowe, B. R., Dupeyrat, G., Marquette, J. B., and Gaucherel, P., 1984, Study of the Reactions N +2 + 2 N2 ---> N +4 + N2 and O +2 + 2 O2 ----> O +4 + O2 from 20 to 160 K by the CRESU Technique, J. Chem. Phys., 80:4915.

    Article  ADS  Google Scholar 

  • Sasaki, S., Kawashima, N., Kuriki, K., Yanagisawa, M., Obayashi, T., Roberts, W. T., Reasoner, D. L., Taylor, W. W. L., Williams, P. R., Banks, P. M., and Burch, J. L., 1986, Gas Ionization Induced by a High Speed Plasma Injection in Space, Geophys. Res. Lett., 13:434.

    Google Scholar 

  • Sherman, J. C., 1973, Review of the Critical Velocity of Gas-Plasma Interaction, Astrophys. Space Sci., 24:487.

    Article  MathSciNet  ADS  Google Scholar 

  • Simpson, S. W., 1981, A Steady State Fluid Model of a Rotating Plasma, Phys. Fluids, 24:418.

    Article  ADS  MATH  Google Scholar 

  • Tanaka, M., and Papadopoulos, K., 1983, Creation of High Energy Tails by Means of the Modified Two-Stream Instability, Phys. Fluids, 26: 1697.

    Article  ADS  Google Scholar 

  • Torbert, R. B., and Newell, P. T., 1986, A Magnetospheric Critical Velocity Experiment: Particle Results, J. Geophys. Res., A91:9947.

    Article  ADS  Google Scholar 

  • Trajmar, S., and Cartwright, D. C., 1984, Excitation of Molecules by Electron Impact, in Electron-Molecule Interations and Their Applications, Vol. 1, Edited by L. G. Christophorou, Academic, Orlando, FL. 155.

    Google Scholar 

  • van Koppen, P. A. M., Jarrold, M. F., Bowers, M. T., Mass, L. M., and Jennings, K. R., 1984, Ion-Molecule Association Reactions: A Study of the Temperature Dependence of the Reaction N2+• + N2 + M -> N4+• + M for M = N2 and He: Experiment and Theory, J. Chem. Phys., 81:288.

    Article  ADS  Google Scholar 

  • Venkataramani, N., and Mattoo, S. K., 1980, Plasma Retardation in Alfvén’s Critical Velocity Phenomenon, Phys. Lett., 79A:393.

    ADS  Google Scholar 

  • Wescott, E. M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986a, Star of Lima: Overview and Optical Diagnostics of a Barium Alfvén Critical Velocity Experiment, J. Geophys. Res., A91:9923.

    Article  ADS  Google Scholar 

  • Wescott, E. M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986b, Star of Condor: A Strontium Critical Velocity Experiment, Peru, 1983, J. Geophys. Res., A91:9933.

    Article  ADS  Google Scholar 

  • Zipf, E. C., 1984, Dissociation of Molecules by Electron Impact, in Electron-Molecule Interactions and Their Applications, Vol. 1, Edited by L. G. Christophorou, Academic, Orlando, FL. 335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Murad, E. (1987). The Role of Atomic and Molecular Processes in the Critical Ionization Velocity Theory. In: Kingston, A.E. (eds) Recent Studies in Atomic and Molecular Processes. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5398-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5398-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5400-0

  • Online ISBN: 978-1-4684-5398-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics