Skip to main content

Transmembrane Signals and Intracellular Messengers Mediating LHRH and LH Secretion

  • Chapter
Regulation of Ovarian and Testicular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 219))

Abstract

The gametogenic and endocrine functions of the gonads are both under the integrative control of the central nervous system. The primary regulatory component in this system is the hypothalamic peptide luteinizing hormone-releasing hormone (LHRH), a decapeptide produced by neurons located in the hypothalamic-preoptic region. After synthesis, LHRH is transported to nerve terminals located in the median eminence, where it is released in close proximity to portal capillaries. The decapeptide is then transported to the anterior pituitary gland through the hypophyseal portal circulation, where, acting on specific membrane receptors, it stimulates LH and FSH secretion. These gonadotropins, in turn, profoundly affect gonadal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Advis JP, McCann SM, Negro-Vilar A, 1980. Evidence that catecholaminergic and peptidergic (LHRH) neurons in suprachiasmatic-medial preoptic, medial basal hypothalamus and median emience are involved in estrogen negative feedback. Endocrinology 107:892–901

    Article  PubMed  CAS  Google Scholar 

  • Andrews WV, Conn PM, 1986. GnRH stimulates mass changes in phosphoino-sitides and diacylglycerol accumulation in purified gonadotrope cell culture. Endocrinology 118:1148–58

    Article  PubMed  CAS  Google Scholar 

  • Bell RL, Kennerly DA, Stanford N, Majerus PW, 1979. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76:3238–41

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, 1981. Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol Cell Endocrinol 24:115–40

    Article  PubMed  CAS  Google Scholar 

  • Bigdeli H, Snyder PJ, 1978. Gonadotropin-releasing hormone release from the rat hypothalamus: dependence on membrane depolarization and calcium influx. Endocrinology 103:281–86

    Article  PubMed  CAS  Google Scholar 

  • Blaustein M, McGraw FC, Somlyo AV, Schweitzer ES, 1980. How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 76:459–70

    CAS  Google Scholar 

  • Borgeat P, 1981. Leukotrienes: a major step in the understanding of immediate hypersensitivity reactions. J Med Chem 24:121–26

    Article  PubMed  CAS  Google Scholar 

  • Capdevila J, Chacos N, Falck JR, Manna S, Negro-Vilar A, Ojeda SR, 1983. Novel hypothalamic arachidonate products stimulate somatostatin release from the median eminence. Endocrinology 113:421–23

    Article  PubMed  CAS  Google Scholar 

  • Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW, 1981a. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci 78:5362–66

    Article  CAS  Google Scholar 

  • Capdevila J, Parkhill L, Chacos N, Okita R, Masters BSS, Estabrook RW, 1981b. The oxidative metabolism of arachidonic acid by purified cytochrome P-450. Biochem Biophy Res Comm 101:1357–63

    Article  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y, 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–51

    PubMed  CAS  Google Scholar 

  • Chiocchio SR, Negro-Vilar A, Tramezzani JH, 1976. Acute changes in norepinephrine content in the median eminence induced by orchidectomy or testosterone replacement. Endocrinology 99:589–95

    Google Scholar 

  • Chobsieng P, Naor Z, Koch Y, Zor U, Linder HR, 1975. Stimulatory effect of prostaglandin E on LH release in the rat: evidence for hypothalamic site of action. Neuroendocrinology 17:12–17

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, 1986. The molecular basis of gonadotropin releasing hormone action. Endoc Rev 7:3–10

    Article  CAS  Google Scholar 

  • Conn PM, Chafouleas J, Rogers D, Means AR, 1981. Gonadotropin releasing hormone stimulates calmodulin redistribution in the rat pituitary. Nature 292:264–67

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, Dufau ML, Catt KJ, 1979. GnRH-stimulated release of LH from rat pituicytes does not require production of cyclic AMP. Endocrinology 104:448–53

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, Ganong BR, Ebeling J, Staley D, Niedel J, Bell RM, 1985. Diacylclycerols release LH: structure-activity relations reveal a role for protein kinase C. Biochem Biophys Res Commun 126:532–39

    Article  PubMed  CAS  Google Scholar 

  • Crowley WR, O’Donohue TL, Wachslicht H, Jacobowitz DM, 1978. Effects of estrogen and progesterone on plasma gonadotropins and on catecholamine levels and turnover in discrete brain regions of ovariectomized rats. Brain Res 154:633–35

    Article  Google Scholar 

  • Culler MD, Negro-Vilar, 1986. Evidence that pulsatile follicle-stimulating hormone secretion is independent of endogenous luteinizing hormone-releasing hormone. Endocrinology 118:609–12

    Article  PubMed  CAS  Google Scholar 

  • Culler MD, Valenca MM, Romanelli F, Negro-Vilar A. Computer-controlled perifusion: characterization for studies of pulsatile gonadotropin secretion. Proc. of 16th Annual Meeting of Society for Neuroscience, (Abstract 282.7), pp. 1025

    Google Scholar 

  • DePaolo LV, Ojeda SR, Negro-Vilar A, McCann SM, 1982. Alterations in the responsiveness of median eminence luteinizing hormone-releasing hormone nerve terminals to norepinephrine and prostaglandin E2 in vitro during the rat estrous cycle. Endocrinology 110:1999–2005

    Article  PubMed  CAS  Google Scholar 

  • Drouva SV, Epelbaum J, Hery M, Tapia-Arancibia L, Laplante E, Kordon C, 1981. Ionic channels involved in the LHRH and SRIF release from rat mediobasal hypothalamus. Neuroendocrinology 32:155–62

    Article  PubMed  CAS  Google Scholar 

  • Ellis GB, Desjardins C, Fraser HM, 1983. Control of pulsatile LH release in male rats. Neuroendocrinology 37:177–83

    Article  PubMed  CAS  Google Scholar 

  • Exton JH, 1982. Molecular mechanisms involved in α-adrenergic response. Trends Pharmacol Sci 3:111–15

    Article  CAS  Google Scholar 

  • Flower RJ, Blackwell GJ, 1976. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol 25:285–91

    Article  PubMed  CAS  Google Scholar 

  • Gallardo E, Rameriz VD, 1977. A method for the superfusion of rat hypothalami: secretion of luteinizing hormone-releasing hormone (LH-RH). Proc Soc Exp Biol Med 195:79–84

    Google Scholar 

  • Gallo RV, 1982. Luteinizing hormone secretion during continuous or pulsatile infusion of norepinephrine: central nervous system desensitization to constant norepinephrine input. Neuroendocrinology 35:380–87

    Article  PubMed  CAS  Google Scholar 

  • Gerozissis K, Rougert C, Dray F, 1986. Leukotriene C4 is a potent stimulator of LHRH secretion. Eur J Pharmacol 121:159–60

    Article  PubMed  CAS  Google Scholar 

  • Gerozissis K, Vulliez B, Saavedra JM, Murthy RC, Dray F, 1985. Lipoxygenase products of arachidonic acid stimulate LHRH release from rat median eminence. Neuroendocrinology 40:272–76

    Article  PubMed  CAS  Google Scholar 

  • Hammarstrom S, 1982. Biosynthesis and biological action of prostaglandins and thromboxanes. Arch Biochem Biophy 214:431–45

    Article  CAS  Google Scholar 

  • Heaulme M, Dray F, 1984. Noradrenaline and prostaglandin E2 stimulate LHRH release from rat median eminence through distinct 1-alpha-adrenergic and PGE2 receptors. Neuroendocrinology 39:403–07

    Article  PubMed  CAS  Google Scholar 

  • Huckle WR, Conn PM, 1985. PI turnover in response to GnRH: independence of Ca2+ -calmodulin and LH release. J Cell Biol (Abstract 14) 101:4a

    Google Scholar 

  • Jaiswal N, Sharma RK, 1986. Dual regulation of adenylate cyclase and guanylate cyclase: α2-adrenergic signal transduction in adrenocortical carcinoma cells. Arch Bioch Bioph 249:616–19

    Article  CAS  Google Scholar 

  • Jennes L, Brouson D, Stumpf WE, Conn PM, 1985. Evidence for an association between calmodulin and membrane patches containing GnRH receptor in cultured pituitary gonadotropes. Cell Tiss Res 239:311–15

    Article  CAS  Google Scholar 

  • Kaibuchi K, Takai Y, Ogawa Y, Kimura S, Nishizuka Y, Nakamura T, Tomomura A, Ichihara A, 1982. Inhibitory action of adenosine 3′5′monophosphate on phosphatidylinositol turnover: difference in tissue response. Biochem Biophys Res Commun 104:105–12

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Kalra PS, 1983. Neural regulation of LH secretion in the rat. Endocr Rev 4:311–51

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Kalrs PS, 1984. Opioid-adrenergic-steroid connection in regulation of luteinizing hormone secretion in the rat. Neuroendocrinology 38:418–26

    Article  PubMed  CAS  Google Scholar 

  • Kant GJ, Sessions GR, Lenox RA, Meyerhoff JL, 1981. The effects of hormonal and circadian cycles, stress, and activity on levels of cyclic AMP and cyclic GMP in pituitary, hypothalamus, pineal gland and cerebellum of female rats. Life Sci 29:2491–99

    Article  PubMed  CAS  Google Scholar 

  • Kao LWL, Weisz J, 1977. Release of gonadotropin-releasing hormone (GnRH) from isolated perifused medial-basal hypothalamus by melatonin. Endocrinology 100:1723–26

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Ramirez VD, 1985. Dibutyryl cyclic adenosine monophosphate stimulates in vitro luteinizing hormone-releasing hormone release only from median eminence derived from ovariectomized, estradiol-primed rat. Brain Res 342:154–57

    Article  PubMed  CAS  Google Scholar 

  • Knobil E, 1980. The neuroendocrine control of the menstrual cycle. Rec Progr Horm Res 36:53–58

    PubMed  CAS  Google Scholar 

  • Langer SZ, 1978. Presynaptic adrenoceptors and regulation of release. In: Paton DM (ed.), The Release of Catecholamines from Adrenergic Neurons. England: Pergamon Press, pp. 59–85

    Google Scholar 

  • Leadem CA, Crowley WR, Simpkins JW, Kalra SP, 1985. Effects of naloxone on catecholamine and LHRH release from the perifused hypothalamus of the steroid-primed rat. Neuroendocrinology 40:497–500

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre DE, Shaw AM, Pollock WK, Marks G, Westwisk J, 1983. Role of endogenous arachidonate metabolites in phospholipid-induced human platelet activation. In: Samuelsson B, Paoletti R, Ramwell P (eds.), Advances in Prostaglandin, Thromboxane, and Leukotriene Research. New York: Raven Press, 11:423–28

    Google Scholar 

  • McEwen B, Biegon A, David P, Krey LC, Luine VN, McGinnis MY, Paden CM, Parson SB, Rainbow TC, 1982. Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Prog Horm Res 38:41–92

    PubMed  CAS  Google Scholar 

  • Meites J, Van Vugt DA, Forman LJ, Sylvester PW, Ierie T, Sonntag W, 1983. Evidence that endogenous opiates are involved in control of gonadotropin secretion. In: Bhatnager AS (ed.), The Anterior Pituitary Gland. New York: Raven Press, pp. 327–40

    Google Scholar 

  • Michel T, Lefkowitz RJ, 1982. Hormonal inhibition of adenylate cyclase. J Biol Chem 257:13557–63

    PubMed  CAS  Google Scholar 

  • Michell RH, 1975. Inositol phospholipids and cell surface receptor function. Biochim Biophy Acta 415:81–147

    CAS  Google Scholar 

  • Morrell JI, Schwanzel-Fukuda M, Fahrbach SE, Pfaff DW, 1984. Axonal projections and peptide content of steroid hormone concentrating neurons. Peptides 5:227–39

    Article  PubMed  CAS  Google Scholar 

  • Naor Z, Catt KJ, 1981. Mechanism of action of gonadotropin releasing hormone, involvement of phospholipid turnover in luteinizing hormone release. J Biol Chem 256:2226–29

    PubMed  CAS  Google Scholar 

  • Naor Z, Ojeda SR, Negro-Vilar A, McCann SM, 1979. Cyclic GMP and cyclic AMP levels in median eminence, hypothalamus and pituitary gland of the rat after decapitation or microwave irradiation. Neurose Lett 13:189–94

    Article  CAS  Google Scholar 

  • Naor Z, Vanderhoek JY, Linder HR, Catt KJ, 1983. Arachidonic and products as possible mediators of the action of gonadotropin-releasing hormone. In: Samuelsson B, Paoletti R, Ramwell P (eds.), Advances in Prostaglandin, Thromboxane, and Leukotriene Research, New York: Raven Press, 12:259–63

    Google Scholar 

  • Naor Z, Zor V, Meidan R, Koch Y, 1978. Sex differences in pituitary cyclic AMP response to gonadotropin releasing hormone. Am J Physiol 235:E37–E41

    PubMed  CAS  Google Scholar 

  • Negro-Vilar A, 1986. LHRH: Physiology, pharmacology and its role in fertility regulation. In: Paulson JD, Negro-Vilar A, Lucena E, Martini L (eds.), Andrology — Male Fertility and Sterility. Orlando: Academic Press, pp. 3–14

    Google Scholar 

  • Negro-Vilar A, Conte M, Valenca MM, 1986. Transmembrane signals mediating neural peptide secretion: role of protein kinase C activators and arachidonic acid metabolites in luteinizing hormone-releasing hormone secretion. Endocrinology 119:2796–802

    Article  PubMed  CAS  Google Scholar 

  • Negro-Vilar A, Culler M, 1986. Computer-controlled perifusion system for neuroendocrine tissues: Development and applications. In: Conn PM (ed.), Methods in Enzymology: Neuroendocrine peptides. Academic Press, pp. 67–9

    Google Scholar 

  • Negro-Vilar A, DePaolo L, Tesone M, Johnston CA, 1982. Role of brain peptides in the regulation of gonadotropin secretion. In: Menchini-Fabris F, Pasini W, Martini L (eds.), Therapy in Andrology: Pharmacological, Surgical, and Physiological Aspects. Amsterdam: Excerpta Medica, pp. 115–23

    Google Scholar 

  • Negro-Vilar A, Lapetina E, 1985. 1,2-Didecanoylglycerol and phorbol 12,13-dibutyrate enhance anterior pituitary hormone secretion in vitro. Endocrinology 117:1559–64

    Google Scholar 

  • Negro-Vilar A, Ojeda SR, 1981. Hypophysiotrophic hormones of the hypothalamus. In: McCann SM (ed.), Endocrine Physiology III, International Review of Physiology. Baltimore: University Park Press, pp. 97–156

    Google Scholar 

  • Negro-Vilar A, Ojeda SR, McCann SM, 1979. Catecholaminergic modulation of luteinizing hormone-releasing hormone release by median eminence terminals in vitro. Endocrinology 104:1749–57

    Article  PubMed  CAS  Google Scholar 

  • Negro-Vilar A, Ojeda SR, McCann SM, 1980. Hypothalamic control of LHRH and somatostatin: role of central neurotransmitters and intracellular messengers. In: Litwack G (ed.), Biochemical Actions of Hormones. New York: Academic Press, pp. 245–84

    Google Scholar 

  • Negro-Vilar A, Snyder GD, Falck JR, Manna S, Chacos N, Capdevila J, 1985. Involvement of eicosanoids in release of oxytocin and vasopressin from the neural lobe of the rat pituitary. Endocrinology 116:2663–68

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y, 1984. Turnover of inositol phospholipids and signal transduction. Science 225:1365–70

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Naor Z, Negro-Vilar A, 1979. The role of prostaglandins in the control of gonadotropin and prolactin secretion. Prostaglandins Med 2:249–75

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Negro-Vilar A, 1984. Release of prostaglandin E2 from the hypothalamus depends on extracellular Ca2+ availability: relation to LHRH release. Neuroendocrinology 39:442–47

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Negro-Vilar A, 1985. Prostaglandin E2 -induced luteinizing hormone releasing hormone release involves mobilization of intracellular Ca2+. Endocrinology 116:1763–70

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Negro-Vilar A, McCann SM, 1982. Evidence for involvement of α-adrenergic receptors in norepinephrine-induced prostaglandin E2 and luteinizing hormone-releasing hormone release from the median eminence. Endocrinology 110:409–12

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Urbanski HF, Katz KH, Costa ME, 1985. Stimulation of cyclic adenosine 3′,5′-monophosphate production enhances hypothalamic luteinizing hormone-releasing hormone releasing without increasing prostaglandin E2 synthesis: studies in prepubertal female rats. Endocrinology 117:1175–78

    Article  PubMed  CAS  Google Scholar 

  • Ojeda SR, Urbanski HF, Katz KH, Costa ME, Conn PM, 1986. Activation of two different but complementary biochemical pathways stimulates release of hypothalamic luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 83:4932–36

    Article  PubMed  CAS  Google Scholar 

  • Raymond V, Leung PCK, Veilleux R, Lefevre G, Labrie F, 1984. LHRH rapidly stimulates phosphatidylinositol metabolism in enriched gonadotrophs. Mol Cell Endocrinol 36:157–64

    Article  PubMed  CAS  Google Scholar 

  • Rotsztejn NH, Charli JL, Pattou E, Epelbaum J, Kordon C, 1976. In vitro release of luteinizing hormone releasing hormone (LHRH) from rat mediobasal hypothalamus: effects of potassium, calcium, and dopamine. Endocrinology 99:1663–66

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson B, 1979–80. Prostaglandins, thromboxanes, and leukotrienes: formation and biological roles. Harvey Lect 75:1–40

    PubMed  Google Scholar 

  • Samuelsson B, 1980. The leukotrienes: a new group of biologically active compounds including SRS-A. Trends Pharmacol Sci 1:227–30

    Article  CAS  Google Scholar 

  • Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten C, 1978. Prostaglandins and thromboxanes. Ann Rev Biochem 47:997–1029

    Article  PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE, 1981. Central noradrenergic neurones concentrate 3H-oestradiol. Nature 289:500–02

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Vale WW, 1981. Desensitization to gonadotropin-releasing hormone observed in superfused pituitary cells on cytodex beads. Endocrinology 108:752–59

    Article  PubMed  CAS  Google Scholar 

  • Snyder GD, Bleasdale JE, 1982. Effect of LHRH on incorporation of 32P-orthophosphate into phosphatidyl inositol by dispersed anterior pituitary cells. Mol Cell Endocrinol 28:55–63

    Article  PubMed  CAS  Google Scholar 

  • Snyder GD, Capdevila J, Chacos N, Manna S, Falck JR, 1983. Action of luteinizing hormone releasing hormone: involvement of novel arachidonic acid metabolites. Proc Natl Acad Sci USA 80:3504–07

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Kishimoto A, Kawahara Y, Minakuchi R, Sano K, Kikkawa U, Mori T, Yu B, Kaibuchi K, Nishizuka Y, 1981. Calcium and phosphatidylinositol turnover as signaling for transmembrane control of protein phosphorylation. Adv Cyclic Nucleotide Res 14:301–13

    PubMed  CAS  Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ, 1984. Distribution of α2 agnoist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of Clonidine and related adrenergic agents. Brain Res Rev 7:69–101

    Article  CAS  Google Scholar 

  • Valenca MM, Conte D, Negro-Vilar A, 1985. Diacylglycerol and phorbol esters enhance LHRH and prostaglandin E secretion from median eminence nerve terminals in vitro. Brain Res Bull 15:657–59

    Article  PubMed  CAS  Google Scholar 

  • Valenca MM, Culler MD, Romanelli F, Negro-Vilar A, 1986. Evaluation of the intracellular events leading to pulsatile LH secretion using computer-designed input signal and controlled perifusion. Proc. of 16th Annual Meeting of Society for Neuroscience, (Abstract 282.8), pp. 1025

    Google Scholar 

  • Williamson JR, 1986. Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture. Hypertension 8:II 140–56

    Google Scholar 

  • Yamura H, Lad PM, Rodbell M, 1977. GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J Biol Chem 252:7964–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Negro-Vilar, A., Valenca, M.M., Culler, M.D. (1987). Transmembrane Signals and Intracellular Messengers Mediating LHRH and LH Secretion. In: Mahesh, V.B., Dhindsa, D.S., Anderson, E., Kalra, S.P. (eds) Regulation of Ovarian and Testicular Function. Advances in Experimental Medicine and Biology, vol 219. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5395-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5395-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5397-3

  • Online ISBN: 978-1-4684-5395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics