Skip to main content

Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation

  • Chapter
Computer-Enhanced Analytical Spectroscopy

Part of the book series: Modern Analytical Chemistry ((MOAC))

  • 119 Accesses

Abstract

Carbon-13 nuclear magnetic resonance (CNMR) spectroscopy is a powerful tool for organic structure elucidation because the signals observed are directly related to the immediate surroundings of the skeletal carbon atoms. Therefore, a great deal of information directly relevant to the skeletal arrangement of the structure is accessible. Modern NMR spectrometers generate huge quantities of data rapidly, increasing the demand for tools to aid the spectroscopist in the analysis of NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. B. Gray, “Computer Assisted Analysis of Carbon-13 NMR Spectral Data,” Prog. NMR Spectrosc. 15, 201–248 (1982).

    Article  CAS  Google Scholar 

  2. R. W. Bally, D. Van Krimpen, P. Cleij and H. A. Van’t Klooster, “An Automated Library Search System for C-13 N.M.R. Spectra Based on the Reproducibility of Chemical Shifts,” Anal. Chim. Acta 157, 227–243 (1984).

    Article  CAS  Google Scholar 

  3. C. A. Shelley and M. E. Munk, “Computer Prediction of Substructures from Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 54, 516–521 (1982).

    Article  CAS  Google Scholar 

  4. C. W. Crandell, N. A. B. Gray and D. H. Smith, “Structure Evaluation Using Predicted C-13 Spectra,” J. Chem. Inf. Comp. Sci. 22, 48–57 (1982).

    Article  CAS  Google Scholar 

  5. D. Johnels, U. Edlund, H. Grahn, S. Hellberg, M. Sjostrom, S. Wold, S. Clementi and W. J. Dunn, “Clustering of Aryl Carbon-13 Nuclear Magnetic Resonance Substituent Chemical Shifts. A Multivariate Data Analysis Using Principal Components,” J. Chem. Soc. Perkin Trans. II 1983, 863–871.

    Google Scholar 

  6. D. Johnels, U. Edlund, E. Johansson and S. Wold, “A Multivariate Method for Carbon-13 NMR Chemical Shift Predictions Using Partial Least-Squares Data Analysis,” J. Magn. Reson. 55, 316–321 (1983).

    Article  CAS  Google Scholar 

  7. O. Sudmeijer, A. E. Wilson and G. R. Hays, “Calculation of C-13 NMR Chemical Shifts for Aromatic Carbons in Polyalkylated Benzenes,” Org. Mag. Res. 22, 459–463 (1984).

    Article  CAS  Google Scholar 

  8. H. N. Cheng and S. J. Ellingsen, “Carbon-13 Nuclear Magnetic Resonance Spectral Interpretation by a Computerized Substituent Chemical Shift Method,” J. Chem. Inf. Comp. Sci. 23, 197–203 (1983).

    Article  CAS  Google Scholar 

  9. D. M. Grant and E. G. Paul, “Carbon-13 Magnetic Resonance. II. Chemical Shift Data for the Alkanes,” J. Am. Chem. Soc. 86, 2984–2990 (1964).

    Article  CAS  Google Scholar 

  10. L. P. Lindeman and J. Q. Adams, “Carbon-13 Nuclear Magnetic Resonance Spectrometry. Chemical Shifts for the Paraffins through C-9,” Anal. Chem. 43, 1245–1252 (1971).

    Article  CAS  Google Scholar 

  11. G. W. Small and P. C. Jurs, “Interactive Computer System for the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 55, 1121–1127 (1983).

    Article  CAS  Google Scholar 

  12. G. W. Small and P. C. Jurs, “Determination of Topological Similarity of Carbon Atoms in the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 56, 1314–1323 (1984).

    Article  CAS  Google Scholar 

  13. J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, Reading, Massachusetts, 1974.

    Google Scholar 

  14. U. Burkert and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, DC, 1982.

    Google Scholar 

  15. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic, New York, 1976.

    Google Scholar 

  16. G. DelRe, “A Simple MO-LCAO Method for the Calculation of Charge Distributions in Saturated Organic Molecules,” J. Chem. Soc. 1958, 4031–4040.

    Google Scholar 

  17. D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley-Interscience, New York, 1980.

    Book  Google Scholar 

  18. G. W. Small, T. R. Stouch and P. C. Jurs, “Automated Selection of Models for the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra,” Anal. Chem. 56, 2314–2319 (1984).

    Article  CAS  Google Scholar 

  19. G. W. Small and P. C. Jurs, “Data Reduction in the Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Steroids,” Anal. Chem. 56, 2307–2314 (1984).

    Article  CAS  Google Scholar 

  20. D. S. Egolf and P. C. Jurs, “Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Substituted Cyclopentanes and Cyclopentanols,” in preparation.

    Google Scholar 

  21. M. Christi, H. J. Reich and J. D. Roberts, “Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Chemical Shifts of Methylcyclopentanes, Cyclopentanols, and Cyclopentyl Acetates,” J. Am. Chem. Soc. 93, 3463–3468 (1971).

    Article  Google Scholar 

  22. Sadtler Standard Carbon-13 NMR Spectra, Sadtler Research Laboratories, Inc., Philadelphia, 1978.

    Google Scholar 

  23. H. J. Schneider, N. Nguyen-Ba and F. Thomas, “Force Field and 13C-NMR Investigations of Substituted Cyclopentanes. A Concept for the Adaption of 13C NMR Shifts to Varying Torsional Arrangements in Flexible Conformers,” Tetrahedron 38, 2327–2337 (1982).

    Article  CAS  Google Scholar 

  24. R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch and A. S. Perlin, “Carbon-13 Chemical Shifts of Furanosides and Cyclopentanols. Configurational and Conformational Influences,” Can. J. Chem. 53, 1424–1433 (1975).

    Article  CAS  Google Scholar 

  25. G. W. Small and P. C. Jurs, “Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Cycloalkanols with Computer-Based Descriptors,” Anal. Chem. 55, 1128–1134 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Jurs, P.C., Egolf, D.S. (1987). Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation. In: Meuzelaar, H.L.C., Isenhour, T.L. (eds) Computer-Enhanced Analytical Spectroscopy. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5368-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5368-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5370-6

  • Online ISBN: 978-1-4684-5368-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics