Skip to main content

Novel Advances in Pattern Recognition and Knowledge-Based Methods in Infrared Spectroscopy

  • Chapter
Computer-Enhanced Analytical Spectroscopy

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Theoreticians can calculate exactly the frequencies at which infrared radiation will be absorbed by a given molecule, assuming the spatial arrangements of the atoms and the strengths of the bonds are known. This assumption is realistic for very small or highly symmetrical larger molecules. For those types of molecules, excellent theoretical treatments have been made. However, the vast majority of molecules have vibrational characteristics and interatomic interactions that are too complex for adequate theoretical treatment, so empirical treatment of the data becomes necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Gribov, “Computational Spectroscopy: Status of Problem,” J. Molec. Struct. 113, 11–23 (1984).

    Article  CAS  Google Scholar 

  2. L. E. Kuentzel, “New Codes for Hollerith-Type Punched Cards,” Anal. Chem. 23, 1413–1418 (1951).

    Article  CAS  Google Scholar 

  3. A. W. Baker, N. Wright and A. Opler, “Automatic Infrared Punched-Card Identification of Mixtures,” Anal. Chem. 25, 1457–1460 (1953).

    Article  CAS  Google Scholar 

  4. R. A. Sparks, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using an IBM 1401 Computer,” American Society for Testing and Materials, Philadelphia, Pennsylvania (1964).

    Google Scholar 

  5. L. D. Smithson, L. B. Fall, F. D. Pitts and F. W. Bauer, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using a 7090 Computer,” Tech. Doc. Rept. No. RTD-TDR-63–4265, Research and Technology Division, Wright Patterson AFB, Ohio (1964).

    Google Scholar 

  6. T. A. Entzminger and E. A. Diephaus, “Storage and Retrieval of Wyandotte-ASTM Infrared Spectral Data Using a Honeywell 400 Computer,” U.S. Public Health Service, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio (1964).

    Google Scholar 

  7. D. H. Anderson and G. L. Covert, “Computer Search System for Retrieval of Infrared Data,” Anal. Chem. 39, 1288–1293 (1967).

    Article  CAS  Google Scholar 

  8. L. H. Cross, J. Haw and D. J. Shields, in Molecular Spectroscopy, Proceedings of a Conference Held at Brighton, England, 17–19 April 1968 (P. Hepple, ed.), The Institute of Petroleum, London, England, 1968, pp. 189–205.

    Google Scholar 

  9. G. A. Massios, “Infrared Spectral Data Retrieval by Computer,” Am. Lab. 3(9), 55–61 (1971).

    CAS  Google Scholar 

  10. D. S. Erley, “Fast Searching System for the ASTM Infrared Data File,” Anal. Chem. 40, 894–898 (1968).

    Article  CAS  Google Scholar 

  11. F. E. Lytle and T. L. Brazie, “Effects of Data Compression on Computer Searchable Files,” Anal. Chem. 42, 1532–1535 (1970).

    Article  CAS  Google Scholar 

  12. D. S. Erley, “A Quantitative Evaluation of Several Infrared Searching Systems,” Appl. Spectrosc. 25, 200–202 (1971).

    Article  Google Scholar 

  13. F. E. Lytle, “Computerized Searching of Inverted Files,” Anal. Chem. 42, 355–357 (1970).

    Article  CAS  Google Scholar 

  14. P. C. Jurs, “Near Optimum Computer Searching of Information Files Using Hash Coding,” Anal. Chem. 43, 364–367 (1971).

    Article  CAS  Google Scholar 

  15. Z. Hippe and R. Hippe, “Computer Retrieval of Spectral Data,” Appl. Spectrosc. Rev. 16, 135–186 (1980).

    Article  CAS  Google Scholar 

  16. J. Zupan, “The Library Search in Analytical Chemistry,” Fresenius Z. Anal. Chem. 313, 466–472 (1982).

    Article  CAS  Google Scholar 

  17. R. J. Obremski and J. W. Mohar, “Computerized Infrared Techniques for Pharmaceutical-Formulation Quality Control,” Pharm. Technol. 3(4), 59–66 (1979).

    CAS  Google Scholar 

  18. R. E. Anacreon and S. C. Pattacini, “Applications of an Infrared Data Processing System,” Am. Lab. 12(2), 97–105 (1980).

    CAS  Google Scholar 

  19. M. Razinger, M. Penca, J. Zupan and M. Janezic, “Computerized Search System Based on Digitized Infrared Spectra,” Fresenius Z. Anal. Chem. 313, 496–499 (1982).

    Article  CAS  Google Scholar 

  20. S. R. Lowry, D. A. Huppler and C. R. Anderson, “Database Development and Search Algorithms for Automated Infrared Spectral Identification,” J. Chem. Inf. Comput. Sci. 25, 235–241 (1985).

    Article  CAS  Google Scholar 

  21. J. T. Clerc and G. Szekely, “Spectroscopic Data Banks,” Trends Anal. Chem. 2(3), 50–53 (1983).

    Article  CAS  Google Scholar 

  22. S. R. Heller, “The Chemical Information System and Spectral Database,” J. Chem. Inf. Comput. Sci. 25, 224–231 (1985).

    Article  CAS  Google Scholar 

  23. J. R. Rumble Jr. and D. R. Lide Jr., “Chemical and Spectral Databases: A Look into the Future,” J. Chem. Inf. Comput. Sci. 25, 231–235 (1985).

    Article  CAS  Google Scholar 

  24. M. Ruprecht and J. T. Clerc, “Performance Analysis of a Simple Infrared Library Search System,” J. Chem. Inf. Comput. Sci. 25, 241–244 (1985).

    Article  CAS  Google Scholar 

  25. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Wiley, New York, 1958.

    Google Scholar 

  26. K. Nakanishi, Infrared Absorption SpectroscopyPractical, Holden-Day, San Francisco, 1962.

    Google Scholar 

  27. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic, New York, 1964.

    Google Scholar 

  28. D. Dolphin and A. E. Wick, Tabulation of Infrared Spectral Data, Wiley, New York, 1977.

    Google Scholar 

  29. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds (4th edn.), Wiley, New York, 1981.

    Google Scholar 

  30. N. J. Nilsson, Learning Machines, McGraw-Hill, New York, 1965.

    Google Scholar 

  31. R. O. Duda and P. E. Hart, Pattern Recognition and Scene Analysis, Wiley, New York, 1973.

    Google Scholar 

  32. Yi-Tzuu Chien, Interactive Pattern Recognition, Dekker, New York, 1978.

    Google Scholar 

  33. P. C. Jurs and T. L. Isenhour, Chemical Applications of Pattern Recognition, Wiley, New York, 1975.

    Google Scholar 

  34. B. R. Kowalski (ed.), Chemometrics: Theory and Application, ACS Symposium Series 52, American Chemical Society, Washington, D.C., 1977.

    Google Scholar 

  35. K. Varmuza, Lecture Notes in Chemistry 21: Pattern Recognition in Chemistry, Springer-Verlag, New York, 1980.

    Book  Google Scholar 

  36. K. Varmuza, “Pattern Recognition in Analytical Chemistry,” Anal. Chim. Acta 122, 227–240 (1980).

    Article  CAS  Google Scholar 

  37. L. Kryger, “Interpretation of Analytical Chemical Information by Pattern Recognition Methods—A Survey,” Talanta 28, 871–887 (1981).

    Article  CAS  Google Scholar 

  38. L. S. Ramos, K. R. Beebe, W. P. Carey, E. Sanchez, B. C. Erickson, B. E. Wilson, L. E. Wangen and B. R. Kowalski, “Chemometrics,” Anal. Chem. 58(5), 294R–315R (1986).

    Article  CAS  Google Scholar 

  39. P. C. Jurs, “Pattern Recognition Used to Investigate Multivariate Data in Analytical Chemistry,” Science 232, 1219–1224 (1986).

    Article  CAS  Google Scholar 

  40. M. P. Derde and D. L. Massart, “Extraction of Information from Large Data Sets by Pattern Recognition,” Fresenius Z. Anal. Chem. 313, 484–495 (1982).

    Article  CAS  Google Scholar 

  41. H. B. Woodruff, G. L. Ritter, S. R. Lowry and T. L. Isenhour, “Pattern Recognition Methods for the Classification of Binary Infrared Spectral Data,” Appl. Spectrosc. 30, 213 – 216 (1976).

    Article  CAS  Google Scholar 

  42. H. B. Woodruff, S. R. Lowry and T. L. Isenhour, “A Comparison of Two Discriminant Functions for Classifying Binary Infrared Data,” Appl Spectrosc.29, 226–230 (1975).

    Article  CAS  Google Scholar 

  43. L. Domokos, I. Frank, G. Matolcsy and G. Jalsovszky, “Pattern Recognition Applied to Vapor-Phase Infrared Spectra,” Anal. Chim. Acta 154, 181–189 (1983).

    Article  CAS  Google Scholar 

  44. D. S. Frankel, “Pattern Recognition of Fourier Transform Infrared Spectra of Organic Compounds,” Anal Chem. 56, 1011–1014 (1984).

    Article  CAS  Google Scholar 

  45. H. B. Woodruff and M. E. Munk, “Computer-Assisted Interpretation of Infrared Spectra,” Anal Chim. Acta 95, 13–23 (1977).

    Article  CAS  Google Scholar 

  46. R. Davis, “Knowledge-Based Systems,” Science 231, 957–963 (1986).

    Article  CAS  Google Scholar 

  47. R. O. Duda and E. H. Shortliffe, “Expert Systems Research,” Science 220, 261–268 (1983).

    Article  CAS  Google Scholar 

  48. D. S. Prerau, “Selection of an Appropriate Domain for an Expert System,” AI Magazine 6(3), 26–30 (1985).

    Google Scholar 

  49. F. Hayes-Roth, D. A. Waterman and D. B. Lenat (eds.), Building Expert Systems, Addison-Wesley, Reading, Massachusetts, 1983.

    Google Scholar 

  50. T. H. Pierce and B. A. Hohne (eds.), Artificial Intelligence Applications in Chemistry, ACS Symposium Series 306, American Chemical Society, Washington, D.C., 1986.

    Google Scholar 

  51. N. A. B. Gray, “Structural Interpretation of Spectra,” Anal. Chem. 47, 2426–2431 (1975).

    Article  CAS  Google Scholar 

  52. H. B. Woodruff and M. E. Munk, “A Computerized Infrared Spectral Interpreter as a Tool in Structure Elucidation of Natural Products, J. Org. Chem. 42, 1761–1767 (1977).

    Article  CAS  Google Scholar 

  53. T. Visser and J. H. Van Der Maas, “Systematic Computer-Aided Interpretation of Infrared and Raman Vibrational Spectra Based on the crise Program,” Anal Chim. Acta 122, 363–372 (1980).

    Article  CAS  Google Scholar 

  54. W. R. Leupold, C. Domingo, W. Niggemann and B. Schrader, “Automatic Reduction and Evaluation of Infrared and Raman Spectra,” Fresenius Z. Anal. Chem. 303, 337–348 (1980).

    Article  CAS  Google Scholar 

  55. H. B. Woodruff and G. M. Smith, “Computer Program for the Analysis of Infrared Spectra,” Anal. Chem. 52, 2321–2327 (1980).

    Article  CAS  Google Scholar 

  56. H. B. Woodruff and G. M. Smith, “Generating Rules for pairs—A Computerized Infrared Spectral Interpreter,” Anal. Chim. Acta 133, 545–553 (1981).

    Article  CAS  Google Scholar 

  57. G. Szalontai, Z. Csapo, and Zs. Recsey, “Computer-Aided Structure Elucidation, III: Extended Version of assigner System,” Acta Chim. Acad. Sci. Hung. 111, 249–258 (1982).

    CAS  Google Scholar 

  58. S. Sasaki, H. Abe, I. Fujiwara, T. Yamasaki, Z. Hippe, G. Debenska, J. Duliban and B. Guzowska-Swider, “Recent Problems of Application of Artificial Intelligence in Computer-Aided Elucidation of Chemical Structures,” Chem. Analityczna 27, 171–181 (1982).

    CAS  Google Scholar 

  59. R. W. Hannah, J. P. Coates, A. Savitzky, M. A. Ford and H. V. Carter, “Method and Apparatus for Determining the Nature of an Unknown Chemical Substance,” U.S. Patent 4,365,303 (1982).

    Google Scholar 

  60. M. O. Trulson and M. E. Munk, “Table-Driven Procedure for Infrared Spectrum Interpretation” Anal. Chem. 55, 2137–2142 (1983).

    Article  CAS  Google Scholar 

  61. H. Jamroz and Z. Latek, “The Algorithm of Substructure Recognition in Organic Compounds by the Artificial Intelligence Method on the Basis of IR-Spectra,” J. Molec. Struct. 115, 277–280 (1984).

    Article  CAS  Google Scholar 

  62. G. M. Smith and H. B. Woodruff, “Development of a Computer Language and Compiler for Expressing the Rules of Infrared Spectral Interpretation,” J. Chem. Inf. Comput. Sci. 24, 33–39 (1984).

    Article  CAS  Google Scholar 

  63. H. J. Luinge and H. A. Van’t Klooster, “Artificial Intelligence Used for the Interpretation of Combined Spectral Data,” Trends Anal. Chem. 4(10), 242–243 (1985).

    Article  Google Scholar 

  64. Z. Hippe, “Problem-Solving Methods in Computer-Aided Organic Structure Determination,” J. Chem. Inf. Comput. Sci. 25, 344–350 (1985).

    Article  CAS  Google Scholar 

  65. B. Curry, in Artificial Intelligence Applications in Chemistry (T. H. Pierce and B. A. Hohne, eds.), American Chemical Society, Washington, D.C., 1986, pp. 350–364.

    Chapter  Google Scholar 

  66. S. A. Tomellini, J. M. Stevenson, and H. B. Woodruff, “Rules for Computerized Interpretation of Vapor-Phase Infrared Spectra,” Anal. Chem. 56, 67–70 (1984).

    Article  CAS  Google Scholar 

  67. H. B. Woodruff, in Progress in Industrial Microbiology (M. E. Bushell, ed.), Elsevier, Amsterdam, 1983, pp. 71–108.

    Google Scholar 

  68. A. B. Delfino and A. Buchs, “Mass Spectra and Computers,” Fortschr. Chem. Forsch. 39, 109–137 (1973).

    Article  CAS  Google Scholar 

  69. N. A. B. Gray and T. O. Gronneberg, “Programs for Spectrum Classification and Screening of Gas Chromatographic-Mass Spectrometric Data on a Laboratory Computer,” Anal. Chem. 47, 419–424 (1975).

    Article  CAS  Google Scholar 

  70. W. T. Wipke, H. Braun, G. Smith, F. Choplin and W. Sieber, in Computer-Assisted Organic Synthesis (W. T. Wipke and W. J. Howe, ed.), American Chemical Society, Washington, D.C., 1977, pp. 97–127.

    Chapter  Google Scholar 

  71. S. A. Tomellini, D. D. Saperstein, J. M. Stevenson, G. M. Smith, H. B. Woodruff and P. F. Seelig, “Automated Interpretation of Infrared Spectra with an Instrument-Based Minicomputer,” Anal. Chem. 53, 2367–2369 (1981).

    Article  CAS  Google Scholar 

  72. M. A. Puskar, S. P. Levine and S. R. Lowry, “Computerized Infrared Spectral Identification of Compounds Frequently Found at Hazardous Waste Sites,” Anal. Chem. 58, 1156–1162 (1986).

    Article  CAS  Google Scholar 

  73. J. A. deHaseth and K. A. Mir, “A Minicomputer Based Structure Elucidation Program,” paper No. 216, Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy, February 25–March 1, 1985.

    Google Scholar 

  74. D. D. Saperstein, “Methodology for Evaluating and Optimizing Infrared Interpretations,” Appl. Spectrosc. 40, 344–348 (1986).

    Article  CAS  Google Scholar 

  75. S. A. Liebman, P. J. Duff, M. A. Schroeder, R. A. Fifer, and A. M. Harper, in Artificial Intelligence Applications in Chemistry (T. H. Pierce and B. A. Hohne, eds.), American Chemical Society, Washington, D.C., 1986, pp. 365–384.

    Chapter  Google Scholar 

  76. S. A. Tomellini, R. A. Hartwick, and H. B. Woodruff, “Automatic Tracing and Presentation of Interpretation Rules Used by pairs: Program for the Analysis of IR Spectra,” Appl. Spectrosc. 39, 331–333 (1985).

    Article  CAS  Google Scholar 

  77. D. Welti, Infrared Vapor Spectra, Heyden, New York, 1970.

    Google Scholar 

  78. S. A. Tomellini, R. A. Hartwick, J. M. Stevenson, and H. B. Woodruff, “Automated Rule Generation for the Program for the Analysis of IR Spectra (pairs), Anal. Chim. Acta 162, 227–240 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Woodruff, H.B. (1987). Novel Advances in Pattern Recognition and Knowledge-Based Methods in Infrared Spectroscopy. In: Meuzelaar, H.L.C., Isenhour, T.L. (eds) Computer-Enhanced Analytical Spectroscopy. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5368-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5368-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5370-6

  • Online ISBN: 978-1-4684-5368-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics