Skip to main content

Translational Regulation during Photomorphogenesis

  • Chapter

Overview

Algae and plants depend on light as the primary environmental stimulus regulating their developmental patterns, as well as their primary energy source. As just two examples, light triggers the development of proplastids into functional chloroplasts in photoautotrophs as divergent as Euglena and peas, and regular cycles of alternating light and darkness have the effect of synchronizing reproductive behavior within populations of organisms as divergent as Chlamydomonas and petunias. The phenomena of light-regulated development, or photomorphogenesis, have been extensively reviewed (as exemplified by several books1–4) and hence no comprehensive summary of them will be given here. Suffice it to say, it is by now well established that marked changes in gene expression occur in a wide range of photoautotrophs in response to light absorbed by one of three categories of photoreceptor pigments (namely, protochlorophyllide, phytochrome, or one of the incompletely defined group of pigments known as “blue-light receptors”). This brief review chapter focuses on the question of what role translational regulation may play in mediating such photoregulated gene expression in plants and algae.

Over the past decade, most attempts to analyze the molecular basis of photomorphogenesis have employed methods specifically designed to detect light-induced changes at the level of messenger RNA (mRNA) accumulation. Not surprisingly, therefore, such effects are by now well established: In many photoregulated systems, changes have been detected in the formation or accumulation, or both, of transcripts from specific nuclear and plastid genes as a consequence of changes in the light quantity or quality (for a recent review see Tobin and Silverthorne5). Indeed, in the jargon of the field, the term photogene appears to have become synonymous with a gene for which such transcription-level effects of light have been demonstrated.6

The purpose of reviewing the more modest, but growing, body of evidence that translational regulation is centrally important in some photoregulated systems is not to cast doubt on the existence or importance of previously reported transcription-level effects. In many cases, the latter are both clearly established and of obvious importance, and students of gene expression anticipate eagerly the future elucidation of mechanisms whereby absorption of particular wavelengths of light can be transduced into locus-specific transcriptional changes. But demonstration of a regulatory effect at one level never automatically implies absence of regulatory effects at other levels, of course. Indeed, it is now apparent that in many biological systems, multiple levels of control exist side by side. And, as we will see, this is frequently the case in photomorphogenesis.

The emphasis herein will be on systems in which the effects of light at the translational level appear to be more rapid, or quantitatively more important, or both, than changes at the transcriptional level in regulating synthesis of the corresponding protein. However, such results should not be extrapolated to systems other than those in which they have been observed. Generalization of mechanisms that underlie photomorphogenesis appears to be particularly difficult, since (as we will see below) different mechanisms may be involved in regulating the synthesis of related polypeptides within a single cell. Nevertheless, the demonstration that some systems that exhibit photoregulated transcript accumulation also exhibit earlier and/or more substantial effects of light on translation should be sufficient to call into question whether the mere demonstration of a transcription-level effect should ever be considered tantamount to establishing the molecular basis of photomorphogenesis in a system in which the extent of translational regulation has not yet been evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mohr, H., 1972, Lectures on Photomorphogenesis, Springer-Verlag, New York.

    Book  Google Scholar 

  2. Senger, H. (ed.), 1980, The Blue Light Syndrome, Springer-Verlag, Berlin.

    Google Scholar 

  3. Shropshire, W., Mohr, H. (eds.), 1983, Photomorphogenesis, Encyclopedia of Plant Physiology, Vols. 16A and 16B, Springer-Verlag, Berlin.

    Google Scholar 

  4. Baker, N. R., Barber, J. (eds.), 1984, Chloroplast Biogenesis, Elsevier, Amsterdam.

    Google Scholar 

  5. Tobin, E. M., Silverthorne, J., 1985, Annu. Rev. Plant Physiol. 36: 569.

    Article  CAS  Google Scholar 

  6. Rodermel, S. R., Bogorad, L., 1985, J. Cell Biol. 100: 463.

    Article  PubMed  CAS  Google Scholar 

  7. Pine, K., Klein, A. O., 1972, Dev. Biol. 28: 280.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto, N., Hasegawa, M., Sasaki, S., Asakawa, S., 1975, Plant Physiol. 56: 734.

    Article  PubMed  CAS  Google Scholar 

  9. Smith, H., 1976, Eur. J. Biochem. 65: 161.

    Article  PubMed  CAS  Google Scholar 

  10. Giles, A. B., Grierson, D., Smith, H., 1977, Planta 136: 31.

    Article  CAS  Google Scholar 

  11. Fourcroy, P., Lambert, C., Rollin, P., 1979, Planta 147: 1.

    Article  CAS  Google Scholar 

  12. Môsinger, E., Shopfer, P., 1983, Planta 158: 501.

    Article  Google Scholar 

  13. Williams, G. R., Novelli, G. D., 1968, Biochim. Biophys. Acta 155: 183.

    PubMed  CAS  Google Scholar 

  14. Travis, R. L., Key, J. L., Ross, C. W., 1974, Plant Physiol. 53: 28.

    Article  PubMed  CAS  Google Scholar 

  15. Jaffe, M. J., 1969, Physiol. Plant. 22: 1033.

    Article  CAS  Google Scholar 

  16. Thein, W., Schopfer, P., 1982, Plant Physiol. 69: 1156.

    Article  Google Scholar 

  17. Silverthorne, J., Tobin, E. M., 1984, Proc. Natl. Acad. Sci. U.S.A. 81: 1112.

    Article  PubMed  CAS  Google Scholar 

  18. Mosinger, E., Batschauer, A., Schâfer, E., Apel, K., 1985, Eur. J. Biochem. 147: 137.

    Article  PubMed  CAS  Google Scholar 

  19. Schiff, J. A., Schwartzbach, S. D., 1982, in: The Biology of Euglena, Vol. 3 (D. E. Buetow, ed.), p. 313, Academic Press, New York.

    Google Scholar 

  20. Ortiz, W., Reardon, E. M., Price, C. A., 1980, Plant Physiol. 66: 291.

    Article  PubMed  CAS  Google Scholar 

  21. Miller, M. E., Jurgeson, J. E., Reardon, E. M., Price, C. A., 1983, J. Biol. Chem. 258: 14, 478.

    Google Scholar 

  22. Fromm, H., Devic, M., Fluhr, R., Edelman, M., 1985, Eur. Mol. Biol. Org. J. 4: 291.

    CAS  Google Scholar 

  23. Berry, J. O., Nikolau, B. J., Carr, J. P., Klessig, D. F., 1985, Mol. Cell Biol. 5: 2238.

    PubMed  CAS  Google Scholar 

  24. Berry, J. O., Nikolau, B. J., Carr, J. P., Klessig, D. F., 1986, Mol. Cell Biol. 6: 2347.

    PubMed  CAS  Google Scholar 

  25. Slovin, J. P., Tobin, E. M., 1982, Planta 154: 465.

    Article  CAS  Google Scholar 

  26. Tobin, E. M., 1981, Plant. Mol. Biol. 1: 35.

    Article  CAS  Google Scholar 

  27. Apel, K., Kloppstech, K., 1980, Planta 150: 426.

    Article  CAS  Google Scholar 

  28. Bennett, J., 1981, Eur. J. Biochem. 118: 61.

    Article  PubMed  CAS  Google Scholar 

  29. Jensen, K. H., Herrin, D. L., Plumley, F. G., Schmidt, G. W., 1986, J. Cell Biol. 103: 1315.

    Article  PubMed  CAS  Google Scholar 

  30. Walter, P., Blobel, G., 1981, J. Cell Biol. 91: 557.

    Article  PubMed  CAS  Google Scholar 

  31. Kirk, D. L., Harper, J. F., 1986, Int. Rev. Cytol. 99: 217.

    Article  PubMed  CAS  Google Scholar 

  32. Kirk, D. L., Kirk, M. M., 1983, Dev. Biol. 96: 493.

    Article  PubMed  CAS  Google Scholar 

  33. Kirk, M. M., Kirk, D. L., 1985, Cell 41: 419.

    Article  PubMed  CAS  Google Scholar 

  34. Lodish, H. F., 1976, Annu. Rev. Biochem. 45: 39.

    Article  PubMed  CAS  Google Scholar 

  35. Walden, W. E., Godefroy-Colburn, T., Thach, R. E., 1981, J. Biol. Chem. 256: 11, 739.

    Google Scholar 

  36. Walden, W. E., Thach, R. E., 1982, in: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (M. Grunberg-Manago, B. Safer, eds.), p. 399, Elsevier, Amsterdam.

    Google Scholar 

  37. Ray, A., Walden, W. E., Brendler, T., Zenger, V. E., Thach, R. E., 1985, Biochemistry 24: 7525.

    Article  PubMed  CAS  Google Scholar 

  38. Walden, W. E., Thach, R. E., 1986, Biochemistry 25: 2033.

    Article  PubMed  CAS  Google Scholar 

  39. Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., Nakanishi, K., 1984, Nature (London) 311: 756.

    Article  CAS  Google Scholar 

  40. Bergmann, J. E., Lodish, H. F., 1979, J. Biol. Chem. 254: 11, 927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, D.L. (1987). Translational Regulation during Photomorphogenesis. In: Ilan, J. (eds) Translational Regulation of Gene Expression. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5365-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5365-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5367-6

  • Online ISBN: 978-1-4684-5365-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics