Skip to main content

Integration of Motor Functions in the Basal Ganglia

  • Conference paper
The Basal Ganglia II

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 32))

Abstract

The basal ganglia are a group of subcortical nuclei that govern the extrapyramidal motor system. Unfortunately, no agreed upon definition exists as to what constitutes either the basal ganglia or the extrapyramidal motor system. Although much precise anatomical detail is available, difficulty arises in integrating this information with physiological function. Despite an immense amount of elegant research spanning many decades, it is still not known exactly what basal ganglia structures do, either individually or as a group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G.I., and Tsukahara, N., 1974, Cerebrocerebellar communication systems. Physiol. Rev., 54:957

    PubMed  CAS  Google Scholar 

  • Aronin, N., Difiglia, M., Graveland, G.A., Schwartz, W.J., and Wu, J.-Y., 1984, Localization of immunoreactive enkephalin in GABA synthesizing neurons of the rat neostriatum, Brain Res., 300:376

    Article  PubMed  CAS  Google Scholar 

  • Bakay, R.A.E., Fiandaca, M.S., Barrow, D.L., Schiff, A., and Collins, D.C., 1985, Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced parkinson-like syndrome in primates, Appl. Neurophysiol., 48:358

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Chattha, G.K., and Martin, J.B., 1986, A comparison of regional somatostatin and neuropeptide Y distribution in rat striatum and brain, Brain Res., 377:240

    Article  PubMed  CAS  Google Scholar 

  • Besson, M.-J., Graybiel, A.M., and Quinn, B., 1986, Coexistence of dynorphin B-like and substance P-like immunoreactivity in striatal neurons in the cat. Soc. Neurosci. Abst., 12:876

    Google Scholar 

  • Bjorklund, A., and Stenevi, U., 1979, Reconstruction of brain circuitries by neural transplants, TINS., 301

    Google Scholar 

  • Burton, K., Farrell, K., Li, D., and Calne, D.B., 1984, Lesions of the putamen and dystonia: CT and magnetic resonance imaging, Neurology, 34:962

    PubMed  CAS  Google Scholar 

  • Carpenter, M.B., and Sutin, J., 1983, Human Neuroanatomy, 8th ed., Williams and Wilkins, Baltimore

    Google Scholar 

  • Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature, 289:537

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C., Ito, M., and Szentagothai, J., 1967, The Cerebellum as a Neuronal Machine, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Graybiel, A.M., 1983, Compartmental organization of the mammalian striatum, Progr. Brain Res., 58:247

    Article  CAS  Google Scholar 

  • Graybiel, A.M., 1986, Neuropeptides in the basal ganglia. Res. Publ. Assoc. Res. Nerv. Ment. Dis., 64:135

    PubMed  CAS  Google Scholar 

  • Kamo, H., Kim, S.U., McGeer, P.L., and Shin, D.H., 1986, Functional recovery in a rat model of Parkinson’s disease following transplantation of cultured human sympathetic neurons, Brain Res., 397:372

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S.T., and Kita, H., 1986, Anatomy and physiology of the basal ganglia, Proc. IUPS, 16:516

    Google Scholar 

  • Kristeva, R., Keller, E., Deeke, L., and Kornhuber, H.H., 1979, Cerebral potentials preceding unilateral and simultaneous bilateral finger movements, Electroencephalogr. Clin. Neurophysiol., 47:229

    Article  PubMed  CAS  Google Scholar 

  • Marchand, R., and Poirier, L.J., 1983, Isthmic origin of neurons of the rat substantia nigra, Neuroscience, 9:373

    Article  PubMed  CAS  Google Scholar 

  • Markstein, R., and Hokfelt, T., 1984, Effect of cholecystokinin-octapeptide on dopamine release from slices of cat caudate nucleus, J. Neurosci., 4:570

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., Boulding, J.C., Gibson, W.C., and Foulkes, R.G., 1961, Druginduced extrapyramidal reactions, JAMA., 177:665

    Article  PubMed  CAS  Google Scholar 

  • McGeer, E.G., Staines, W.A., and McGeer, P.L., 1983, Neurotransmitters in the basal ganglia, Can. J. Neurol. Sci., 11:89

    Google Scholar 

  • McGeer, P.L., Eccles, J.C., and McGeer, E.G., 1987, Molecular Biology of the Mammalian Brain, 2nd ed., Plenum Press, New York.

    Book  Google Scholar 

  • Oertel, W.H., Riethmuller, G., Mugnaini, E., Schmechel, D.E., Weindl, A., Gramsh, C., and Herz, A., 1983, Opioid peptide-like immunoreactivity localized in gabaergic neurons of rat neostriatum and central amygdaloid nucleus, Life Sci., 33(Suppl. I):73

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Backlund, E.-O., Freed, W., Herrera-Maraschitz, M., Hoffer, B., Seiger, A., and Stromberg, I., 1985, Transplantation of monoamine-producing cell systemsin oculo and intracranially: experiments in search of a treatment for Parkinson’s disease, Ann. N.Y. Acad. Sci., 457:105

    Article  PubMed  CAS  Google Scholar 

  • Penny, G.R., Afsharpour, S., and Kitai, S.T., 1986, The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience, 17:1011

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., 1986, Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events, J. Neurophysiol., 55:660

    PubMed  CAS  Google Scholar 

  • Schultz, W., Ruffieux, A., and Aebischer, P., 1983, The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation, Exp. Brain Res., 51:377

    Article  Google Scholar 

  • Smith, Y., and Parent, A., 1986, Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin, Brain Res., 372:241

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., and Mizuno, N., 1986, Immunohistochemical demonstration of neurotensin in striatal neurons of the cat, with particular reference to coexistence with enkephalin, Brain Res., 398:195

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., and Johansson, O., 1983, Striatal neurons containing both somatostatin and avian pancreative polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity: a light and electron microscopic study, J. Comp. Neurol., 217:264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

McGeer, P.L., McGeer, E.G. (1987). Integration of Motor Functions in the Basal Ganglia. In: Carpenter, M.B., Jayaraman, A. (eds) The Basal Ganglia II. Advances in Behavioral Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5347-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5347-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5349-2

  • Online ISBN: 978-1-4684-5347-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics