Skip to main content

Basal Ganglia Mechanisms Mediating Experimental Dyskinesia in the Monkey

  • Conference paper
The Basal Ganglia II

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 32))

Abstract

Disordered function of the basal ganglia may lead to a wide spectrum of motor abnormalities, depending upon the nature of the precipitating factor. Thus, for example, destruction of the subthalamic nucleus produces hemiballismus, degeneration of the neostriatum induces chorea, and interruption of dopaminergic nigostriatal transmission gives rise to parkinsonism. The origin of abnormal activity in other conditions, such as athetosis and dystonia, remains speculative but almost certainly involves the basal ganglia, most likely the neostriatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auker, C.R., Meszler, R.M. and Carpenter, D.O., 1983, Apparent discrepancy between single-unit activity and [14C] deoxyglucose labelling in optic tectum of the rattlesnake, J. Neuropysiol., 49:1504.

    CAS  Google Scholar 

  • Bankiewicz, K.S., Oldfield, E.H., Chiueh, C.C., Doppman, J.L., Jacobowitz, D.M. and Kopin, I.J., .1986, Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), Life Sci., 39:7.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E.D. and Iversen, L.L., 1974, Huntington’s chorea. Postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia, Brain, 97:457.

    Article  PubMed  CAS  Google Scholar 

  • Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M.and Kopin, I.J., 1983, A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. U.S.A., 80:4546.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.B., Batton, R.R., Carleton, S.C. and Keller, J.T., 1981a, Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey, J. comp. Neurol., 197:579.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.B., Carleton, S.C., Keller, J.T. and Conte, P., 1981b, Connections of the subthalamic nucleus in the monkey, Brain. Res., 224:1

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.B. and Sutin, J., 1983, “Human Neuroanatomy,” Williams and Wilkins, Baltimore.

    Google Scholar 

  • Carpenter, M.B., Whittier, J.R. and Mettler, V.A., 1950, Analysis of choreoid hyperkinesia in the rhesus monkey: surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys, J. comp. Neurol., 92:293.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, I.S., 1969, “Involuntary Movement Disorders,” Hoeber Medical Division, Harper and Row, New York.

    Google Scholar 

  • Crossman, A.R. and Jackson, A., 1984, A new experimental model of choreoathetosis in the primate, J. Physiol., 350:36.

    Google Scholar 

  • Crossman, A.R., Mitchell, I.J. and Sambrook, M.A., 1985, Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey, Neuropharmacology, 24:587.

    Article  PubMed  CAS  Google Scholar 

  • Crossman, A.R., Sambrook, M.A. and Jackson, A., 1980, Experimental hemiballismus in the baboon produced by injection of a gammaaminobutyric acid. antagonist into the basal ganglia, Neurosci. Letts., 20:369.

    Article  CAS  Google Scholar 

  • Crossman, A.R., Sambrook, M.A. and Jackson, A., 1984, Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia, Brain, 107:579.

    Article  PubMed  Google Scholar 

  • DeLong, M.R. and Georgopoulos, A.P., 1981, Motor functions of the basal ganglia, in: “Handbook of Physiology”, Section 1, Volume II, Part 2, V.B. Brooks, ed., American Physiological Society, Bethesda.

    Google Scholar 

  • DeVito, J.L. and Anderson, M.E., 1982, An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta, Exp. Brain Res., 46:107.

    Article  PubMed  CAS  Google Scholar 

  • Feger, J. and Crossman, A.R., 1984, Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: a retrograde fluorescence doublelabelling study, Neurosci. Letts., 49:7.

    Article  CAS  Google Scholar 

  • Fonnum, F., Grofova, I. and Rinvik, E., 1978, Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat, Brain Res., 153:370.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.A., Rafols, J.A. and Cowan, W.M., 1975, Computer measurements of axis cylinder diameters of radial fibers and “comb” bundle fibres, J. comp. Neurol., 159:201.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill, E., 1986, The basal ganglia and the locomotor regions, Brain Res. Rev., 11:47.

    Article  Google Scholar 

  • Hammond, C., Shibazaki, T. and Rouzaire-Dubois, B., 1983, Branched output neurons of the rat subthalamic nucleus: electrophysiological study of the synaptic effects on identified cells of the two main target nuclei, the entopeduhcular nucleus and the substantia nigra, Neuroscience, 9:511.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A. and Crossman, A.R., 1984, Experimental choreoathetosis produced by injection of a gamma-aminobutyric acid antagonist into the lentiform nucleus in the monkey, Neurosci. Letts., 46:41

    Article  CAS  Google Scholar 

  • Kim, R., Nakano, K., Jayaraman, A. and Carpenter M.B., 1976, Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey, J. comp. Neurol., 169:263.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J.W. and Ballard, P., 1984, Parkinsonism induced by l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson’s disease, Can. J. neurol. Sci., 11:160.

    PubMed  CAS  Google Scholar 

  • Mata, M., Fink, D. J., Gainer, H., Smith, C.B., Davidsen, L., Savaki, H., Schwartz, W.J. and Sokoloff, L., 1980, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem., 34:213.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G. and Fibiger, H.C., 1973, Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. A preliminary study, Neurology, 23:912.

    PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Cross, A.J., Sambrook, M.A. and Crossman, A.R., 1985a, Sites of the neurotoxic action of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine in the monkey include the ventral tegmental area and the locus coeruleus, Neurosci. Letts., 61:195

    Article  CAS  Google Scholar 

  • Mitchell, I. J., Cross A.J., Sambrook, M.A. and Crossman, A.R., 1986a, N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: neurochemical pathology and regional brain metabolism, J. neural. Transm., Suppl. XX:41.

    Google Scholar 

  • Mitchell, I. J., Cross, A.J., Sambrook, M.A. and Crossman, A.R., 1986b, Neural mechanisms mediating l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake, Neurosci. Letts., 63:61.

    Article  CAS  Google Scholar 

  • Mitchell, I.J., Jackson A., Sambrook, M.A. and Crossman, A.R., 1985b, Common neural mechanisms in experimental chorea and hemiballismus in the monkey. Evidence from 2-deoxyglucose autoradiography, Brain Res., 339:346.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., Sambrook, M.A. and Crossman, A.R., 1985c, Subcortical changes in the regional uptake of [3H]-2-deoxyglucose in the brain of the monkey during experimental choreiform dyskinesia elicited by injection of a gamma-aminobutric acid antagonist into the subthalamic nucleus, Brain, 108:421.

    Article  Google Scholar 

  • Nauta, H.J.W. and Cole, M., 1978, Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat, J. comp. Neurol., 180:1.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W.J.H. and Mehler, W.R., 1966, Projections of the lentiform nucleus in the monkey, Brain Res., 1:3.

    Article  PubMed  CAS  Google Scholar 

  • Needham, G.A., Soden, P.D., Sambrook, M.A. and Crossman, A.R., 1983, A remotely operated pump for intracerebral micro-injection in the primate, J. Neurosci. Meth., 7:281.

    Article  CAS  Google Scholar 

  • Rouzaire-Dubois, B., Hammond, C., Hamon, B. and Feger, J., 1980,Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat, Brain Res., 200:321.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, W.J., Smith, C.B., Davidsen, L., Savaki, H. and Sokoloff, L., 1979, Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat, Science, 205:723

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlack, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M., 1977, The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat, J. Neurochem, 28:897.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, J., 1967, The efferent projections of the putamen in the monkey, Exp. Neurol., 19:463.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, J., 1970, Projections from the body of the caudate nucleus in the rhesus monkey, Exp. Neurol., 27:1

    Article  PubMed  CAS  Google Scholar 

  • Tsubokawa, T. and Sutin, J., 1972, Pallidal and tegmental inhibition of oscillatory slow waves and unit activity in the subthalamic nucleus, Brain Res., 41:101.

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooy D. and Hattori, T., 1980, Single subthalamic nucleus neurones project to both the globus pallidus and substantia nigra in rat,J. comp. Neurol., 192:751.

    Article  Google Scholar 

  • Van der Kooy, D., Hattori, T., Shannak, K. and Hornykiewicz, O., 1981, The pallido-subthalamic projection in rat: anatomical and biochemical studies, Brain Res., 204:253.

    Article  PubMed  Google Scholar 

  • Vincent, S. R., Kimura, H. and McGeer, E.G., 1982, A histochemical study of GABA-transaminase in the efferents of the pallidum, Brain Res., 241:162.

    Article  PubMed  CAS  Google Scholar 

  • Whittier, J.R., 1947, Ballism and the subthalamic nucleus (nucleus hypothalamicus; corpus Luysi), Arch. Neurol. Psychiat., 58:672.

    PubMed  CAS  Google Scholar 

  • Whittier, J.R. and Mettler, F.A., 1949, Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiologic effects of subthalamic lesions, with special reference to the subthalamic nucleus of Luys, J. comp. Neurol., 90:319.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M., Rabin, A. and Anderson, M., 1972, Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers, Exp. Brain Res., 15:333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Crossman, A.R. et al. (1987). Basal Ganglia Mechanisms Mediating Experimental Dyskinesia in the Monkey. In: Carpenter, M.B., Jayaraman, A. (eds) The Basal Ganglia II. Advances in Behavioral Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5347-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5347-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5349-2

  • Online ISBN: 978-1-4684-5347-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics