Skip to main content

Magnetoelastic Contribution to Ultrasonic Attenuation in Structural Steels

  • Chapter

Abstract

During recent years, there has been sustained interest in the use of ultrasonic attenuation to characterize the microstructure and mechanical properties of metals 1–4 . However, most of these studies have focussed on attenuation associated with scattering and have either neglected or treated in an empirical and simplified manner other contributions to attenuation. In the present study, we show that absorption of magnetoelastic origin can give rise to substantial attenuation in common structural steels and investigate its dependence on ultrasonic frequency and magnetic permeability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Klinman, G.R. Webster, F.J. Marsh and E.T. Stephenson, “Ultrasonic prediction of grain size, strength and toughness in plain carbon steel”, Mat. Eval., Oct. 1980, p. 26.

    Google Scholar 

  2. R. L. Smith and W.N. Reynolds, “The correlation of ultrasonic attenuation, microstructure and ductile to brittle transition temperature in very low carbon steels”, J. Mat. Sc, 17, p. 1420 (1982).

    Article  CAS  Google Scholar 

  3. F. Nadeau, J.F. Bussière and G. Van Drunen, “On the relation between ultrasonic attenuation and fracture toughness in type 403 stainless steel”, Mat. Eval., Jan. 1985, p. 101.

    Google Scholar 

  4. E.R. Generazio, “Scaling attenuation data characterizes changes in material microstructure”, Mat. Eval., Feb. 1986, p. 198.

    Google Scholar 

  5. R. Truell, C. Elbaum and B. B. Chick, “Ultrasonic methods in solid state physics”, Academic Press, New York (1969).

    Google Scholar 

  6. A. S. Nowick and B.S. Berry, “Anelastic relaxation in crystalline solids”, Academic Press, New York (1972).

    Google Scholar 

  7. W. P. Mason, “Domain wall relaxation in nickel”, Phys. Rev., 83, p. 683 (1951)

    Article  Google Scholar 

  8. W. P. Mason, “Rotational relaxation in nickel at high frequencies”, Rev. Mod. Phys., 25, p. 136 (1953).

    Article  Google Scholar 

  9. S. Levy and R. Truell, “Ultrasonic attenuation in magnetic single crystals”, Rev. Mod. Phys., 25, p. 140 (1953).

    Article  Google Scholar 

  10. W. J. Bratina, “Internal friction and basic fatigue mechanisms in body-centered cubic metals, mainly iron and carbon steels” in “Physical Acoustics” Vol. III part A, p. 223, Academic Press, New York (1966).

    Google Scholar 

  11. M. Deka and N. Eberhardt, “Internal friction of Fe-based binary alloys at high frequency”. Proc. of a Symposium on Nondestructive Methods for Material Property Determination, Hershey, Pennsylvania, April 6–8, 1983, ed. C.O. Ruud and R.E. Green Jr., Plenum Press, New York, p. 135 (1984).

    Google Scholar 

  12. J. P. Monchalin and J. F. Bussière, “Infrared detection of ultrasonic absorption and application to the determination of absorption in steel”, Proc. Review of Progress in Quantitative NDE, San Diego, CA., July 8–13, 1984, ed. D.O. Thompson, Plenum Press, New York, p. 965 (1985).

    Google Scholar 

  13. E. P. Papadakis, “Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers”, J. Testing and Evaluation, JTEVA, 12. p. 273 (1984).

    Article  Google Scholar 

  14. P. H. Rogers and A. L. Van Buren, “An exact expression for the Lommel diffraction correction integral”, J. Acoust. Soc. Am., 55, p. 724 (1974).

    Article  Google Scholar 

  15. E. P. Papadakis, “Effects of input amplitude profile upon diffraction loss and phase change in a pulse-echo system”, J. Acoust. Soc. Am., 49, p. 166 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Langlois, P., Bussière, J.F. (1987). Magnetoelastic Contribution to Ultrasonic Attenuation in Structural Steels. In: Bussière, J.F., Monchalin, JP., Ruud, C.O., Green, R.E. (eds) Nondestructive Characterization of Materials II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5338-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5338-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5340-9

  • Online ISBN: 978-1-4684-5338-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics