Regulation of Starch Synthesis: Enzymological and Genetic Studies

  • Jack Preiss
  • Mark Bloom
  • Matthew Morell
  • Vicki L. Knowles
  • William C. Plaxton
  • Thomas W. Okita
  • Ray Larsen
  • Alice C. Harmon
  • Cindy Putnam-Evans
Part of the Basic Life Sciences book series (BLSC, volume 41)


The biosynthesis of the α-1,4-glucosidic linkages found in the two polyglucans present in the starch granule, amylose and amylopectin, occurs via two reactions (for reviews, see Ref. 22 and 23). First, ADP-glucose (ADPG) is synthesized from ATP and α-glucose-1-P (reaction 1). Second, the glucosyl portion of ADPG is transferred to the nonreducing end of the maltodextrin or starch primer to form a new α-1,4 glucosyl linkage (reaction 2).


Starch Synthesis Crassulacean Acid Metabolism Plant Maize Endosperm ADPglucose Pyrophosphorylase Spinach Leaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baecker, P.A., C.E. Furlong, and J. Preiss (1983) Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J. Biol. Chem. 258: 5084–5088.PubMedGoogle Scholar
  2. 2.
    Bhown, A.S., J.E. Mole, A. Weissinger, and J.C. Bennett (1978) Methanol solvent system for rapid analysis of phenylthiohydrantoín amino acids by high-pressure liquid chromatography. J. Chromatography 148: 532–535.CrossRefGoogle Scholar
  3. 3.
    Burnette, W.N. (1981) “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio-iodinated protein A. Analyt. Biochem. 112:195–203.PubMedCrossRefGoogle Scholar
  4. 4.
    Copeland, L., and J. Preiss (1981) Purification of spinach leaf ADPG pyrophosphorylase. Plant Physiol. 68: 966–1001.CrossRefGoogle Scholar
  5. 5.
    Dickinson, D., and J. Preiss (1969) ADPglucose pyrophosphorylase from maize endosperm. Arch. Biochem. Biophys. 130: 119–128.Google Scholar
  6. 6.
    Dickinson, D., and J. Preiss (1969) Presence of ADPglucose pyrophosphorylase in Shrunken-2 and Brittle-2 mutants of maize endosperm. Plant Physiol. 44: 1058–1062.PubMedCrossRefGoogle Scholar
  7. 7.
    Fliegge, R., U.-I. Flügge, K. Werdàn, and H.W. Heldt (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triose phosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta 502: 232–247.Google Scholar
  8. 8.
    Flügge, U.-I., and H.W. Heldt (1984) The phosphate-triose phosphatephosphoglycerate translocater of the chloroplast. Trends Biochem. Sci. 9: 530–533.Google Scholar
  9. 9.
    Fuchs, R.L., and J.D. Smith (1979) The purification and characterization of ADPglucose from developing maize seeds. Biochim. Biophys. Acta 566: 40–48.Google Scholar
  10. 10.
    Ghosh, H.P., and J. Preiss (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach chloroplasts. J. Biol. Chem. 241: 4491–4504.PubMedGoogle Scholar
  11. 11.
    Harmon, A.C., C. Putnam-Evans, and M.J. Cormier (1987) Calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. (submitted for publication).Google Scholar
  12. 12.
    Haugen, T.H., A. Ishaque, and J. Preiss (1976) Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coli B glucose-l-phosphate adenyl transferase (E.C. J. Biol. Chem. 251: 7880–7885.PubMedGoogle Scholar
  13. 13.
    Henikoff, S. (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359.PubMedCrossRefGoogle Scholar
  14. 14.
    Huber, S.C. (1986) Fructose 2,6-bisphosphate as a regulatory metabolite in plants. Ann. Rev. Plant Physiol. 37: 233–246.CrossRefGoogle Scholar
  15. 15.
    Huyhn, T.V., R.A. Young, and R.W. Davis (1984) Constructing and screening cDNA libraries in Agt10 and Xgt11. In Cloning Techniques: A Practical Approach, D. Glover, ed. IRL Press, Oxford, pp. 49–78.Google Scholar
  16. 16.
    Krishnan, H.B., C.D. Reeves, and T.W. Okita (1986) ADPglucose pyrophosphorylase is encoded by different mRNA transcripts in leaf and endosperm of cereals. Plant Physiol. 81: 642–645.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  19. 19.
    Parsons, T.F., and J. Preiss (1978) Biosynthesis of bacterial glycogen. Incorporation of pyridoxal-phosphate into the allosteric activator site and an ADPglucose-protected pyridoxal-P binding site of Escherichia coli B ADPglucose synthase. J. Biol. Chem. 253: 6197–6202.PubMedGoogle Scholar
  20. 20.
    Parsons, T.F., and J. Preiss (1978) Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADPglucose-protected pyridoxal-P binding site of Escherichia coli B ADPglucose synthase. J. Biol. Chem. 253: 7638–7645.PubMedGoogle Scholar
  21. 21.
    Plaxton, W.C., and J. Preiss (1987) Purification and properties on non-proteolytic degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol. (in press).Google Scholar
  22. 22.
    Preiss, J. (1982) Regulation of the biosynthesis and degradation of starch. Ann. Rev. Plant Physiol. 33: 431–454.CrossRefGoogle Scholar
  23. 23.
    Preiss, J., and C. Levi (1980) Starch biosynthesis and degradation. In The Biochemistry of Plants. Vol. 3. Carbohydrates, Structure and Function, J. Preiss, ed. Academic Press, Inc., New York, pp. 371–423.Google Scholar
  24. 24.
    Preiss, J., and D.A. Walsh (1981) The comparative biochemistry of glycogen and starch. In Biology of Carbohydrates, Vol. 1, V. Ginsburg, ed. John Wiley and Sons, New York, pp. 199–314.Google Scholar
  25. 25.
    Preiss, J., H.P. Ghosh, and J. Wittleop (1967) Regulation of the biosynthesis of starch in spinach leaf chloroplasts. In Biochemistry of Chloroplasts, Vol. 2, T.W. Goodwin, ed. Academic Press, Inc., New York, pp. 131–153.Google Scholar
  26. 26.
    Preiss, J., M. Morell, M. Bloom, V. Knowles, and T.-P. Lin (1987) Starch synthesis and its regulation. In Proceedings of the VII International Congress on Photosynthesis, J. Biggins, ed. Martinus Nijhoff Publishers, Amsterdam (in press).Google Scholar
  27. 27.
    Sanger, F., S. Nicklen, and A.R. Coulson (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci., USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  28. 28.
    Sanwal, G.G., E. Greenberg, J. Hardie, E.C. Cameron, and J. Preiss (1968) Regulation of starch synthesis in plant leaves: Activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol. 43: 417–427.PubMedCrossRefGoogle Scholar
  29. 29.
    Shannon, J.C., and D.L. Garwood (1984) Genetics and physiology of starch development. In Starch: Chemistry and Industry, R.L. Whistler, E.F. Paschall, and J.N. BeMiller, eds. Academic Press, Inc., New York, pp. 26–86.Google Scholar
  30. 30.
    Singh, B.K., E. Greenberg, and J. Preiss (1984) ADPglucose pyrophosphorylase from the CAM plants Hoya carnosa and Xerosicyos danguyii. Plant Physiol. 74: 711–716.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith, P.K., R.I. Krohn, G.T., Hermanson, A.K., Mallia, F.H., Gartner, M.D., Provenzano, E.K., Fujimoti, N.M., Goeke, B.J. Olson, and D.C. Klenk (1985) Measurement of protein using bicinchoninic acid. Analyt. Biochem. 150: 76–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Sowokinas, J.R., and J. Preiss (1982) Pyrophosphorylases in Solanum tuberosum III. Purification, physical, and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol. 69: 1459–1466.CrossRefGoogle Scholar
  33. 33.
    Spilatro, S.R., and J. Preiss (1987) Regulation of starch synthesis in the bundle sheath and mesophyll of Zea mays L. Intracellular compartmentalization of enzymes of starch metabolism and properties of ADP-glucose pyrophosphorylases. Plant Physiol. (in press).Google Scholar
  34. 34.
    Stitt, M., B. Herzog, and H.W. Heldt (1984) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate. I. Coordination of CO2 fixation and sucrose synthesis. Plant Physiol. 75: 548–553.PubMedCrossRefGoogle Scholar
  35. 35.
    Stitt, M., B. Kürzel, and H.W. Heldt (1984) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate II partitioning between sucrose and starch. Plant Physiol. 75: 554–560.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsai, C.-Y., and O.E. Nelson (1966) Starch deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151: 341–343.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsai, C.Y., F. Salamini, and O.E. Nelson (1970) Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 46: 299–306.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jack Preiss
    • 1
  • Mark Bloom
    • 1
  • Matthew Morell
    • 1
  • Vicki L. Knowles
    • 1
  • William C. Plaxton
    • 1
  • Thomas W. Okita
    • 2
  • Ray Larsen
    • 2
  • Alice C. Harmon
    • 3
  • Cindy Putnam-Evans
    • 3
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA
  2. 2.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  3. 3.Department of BiochemistryUniversity of GeorgiaAthensGreece

Personalised recommendations