Skip to main content

Mobilization of Different Pools of Glucose-Incorporated Calcium in Pancreatic β-Cells after Muscarinic Receptor Activation

  • Chapter
Biophysics of the Pancreatic β-Cell

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 211))

Abstract

The introduction of new techniques and access to clonal lines of insulin-secreting cells have resulted in a re-evaluation of how glucose affects Ca2+ movements in the pancreatic β-cells. Contrary to previous views that calcium mobilization from intracellular stores is an important factor in glucose stimulated insulin release30,35 and that the sugar inhibits the extrusion of Ca2+ from the β-cells20,35, it was demonstrated that glucose has the opposite effects14–16. The action of glucose on the cytoplasmic Ca2+ regulating insulin release can consequently be regarded as reflecting the balance between increased entry of Ca2+ into the β-cells and the enhanced removal of the ion from the cytoplasm following intracellular trapping and stimulated outward transport. Although each of these three important movements of Ca2+ are stimulated, individual differences exist with regard to the latency of the effects and their sensitivity to the glucose stimulus. Moreover, with the prolongation of the exposure to glucose the promotion of the intracellular buffering of Ca2+ becomes less pronounced due to a limited capacity for sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Andersson, P.-O. Berggren, E. Gylfe, and B. Hellman, Amounts and distribution of intracellular magnesium and calcium in pancreatic β-cells, Acta Physiol. Scand. 114:235 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. M.J. Berridge and R.F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. L. Best and W.J. Malaisse, Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine, Biochem. Biophys Res. Commun. 116:9 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. L. Best and W.J. Malaisse, Nutrient and hormone neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets, Endocrinology 115:1814 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. T.J. Biden, M. Prentki, R.F. Irvine, M.J. Berridge, and C.B. Wollheim, Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells, Biochem. J. 223:467 (1984).

    PubMed  CAS  Google Scholar 

  6. J.A. Creba, C.P. Downes, P.T. Hawkins, G. Brewster, R.H. Michell and C.J. Kirk, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Biochem. J. 212:733 (1983).

    PubMed  CAS  Google Scholar 

  7. A.H. Drummond, Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells, Nature 315:752 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. M.E. Dunlop and R.G. Larkins, The role of calcium in phospholipid turnover following glucose stimulation in neonatal rat cultured islets, J. Biol. Chem. 259:8407 (1984).

    PubMed  CAS  Google Scholar 

  9. E. Gagerman, J. Sehlin and I.B. Täljedal, Effects of acetylcholine on ion fluxes and Chlortetracycline fluorescence in pancreatic islets, J. Physiol. 300:505 (1980).

    PubMed  CAS  Google Scholar 

  10. E. Gylfe and B. Hellman, Calcium and pancreatic β-cell function. 2. Mobilization of glucose-sensitive 45Ca from perifused islets rich in β-cells, Biochim. Biophys Acta 538:249 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. E. Gylfe and B. Hellman, Glucose-stimulated sequestration of calcium in clonal insulin-releasing cells. Evidence for an opposing effect of muscarinic receptor activation, Biochem. J. 233:865 (1986).

    PubMed  CAS  Google Scholar 

  12. E. Gylfe, T. Andersson, P. Rorsman, H. Abrahamsson, P. Arkhammar, P. Hellman, B. Hellman, H.K. Oie, and A.F. Gazdar, Depolarization-independent net uptake of calcium into clonal insulin-releasing cells exposed to glucose, Biosci, Rep 3:927 (1983).

    Article  CAS  Google Scholar 

  13. B. Hellman, The significance of calcium for glucose stimulation of insulin release, Endocrinology 97:392 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. B. Hellman, β-cell cytoplasmic Ca2+ balance as a determinant for glucose-stimulated insulin release, Diabetologia 28:494 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. B. Hellman and E. Gylfe, Glucose regulation of insulin release involves intracellular sequestration of calcium, in: “Calcium in Biological Systems”, R.P. Rubin, G.B. Weiss, and J.W. Putney, Jr., eds., pp 93–99, Plenum Publishing Corp, New York (1985).

    Chapter  Google Scholar 

  16. B. Hellman and E. Gylfe, Calcium and the control of insulin secretion, in: “Calcium and Cell Function”, W.Y. Cheung, ed., vol. 6:pp 253–326, Academic Press, New York (1985).

    Google Scholar 

  17. B. Hellman and E. Gylfe, Mobilization of different intracellular calcium pools after activation of muscarinic receptors in pancreatic β-cells, Pharmacology, in press(1986).

    Google Scholar 

  18. B. Hellman, T. Andersson, P.-O. Berggren, P. Flatt, E. Gylfe, and K.D. Kohnert, The role of calcium in insulin secretion, in: “Hormone and Cell Regulation”, J. Dumont and J. Nunez, eds, vol. 3: pp 69–96, Elsevier/North Holland Biomedical Press, Amsterdam (1979).

    Google Scholar 

  19. B. Hellman, T. Honkanen, and E. Gylfe, Glucose inhibits insulin release induced by Na mobilization of intracellular calcium, FEBS Lett. 148:289 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. A. Herchuelz and W.J. Malaisse, Calcium movements and insulin release in pancreatic islets, Diabete. Metab. 7:283 (1981).

    PubMed  CAS  Google Scholar 

  21. R.F. Irvine, E.E. Anggard, A.J. Letcher, and C.P. Downes, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands, Biochem. J. 229:505 (1985).

    PubMed  CAS  Google Scholar 

  22. S.K. Joseph, R.J. Williams, B.E. Corkey, F.M. Matschinsky, and J.R. Williamson, The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells, J. Biol. Chem. 259:12952 (1984).

    PubMed  CAS  Google Scholar 

  23. S.G. Laychock, Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans, Biochem. J. 216:101 (1983).

    PubMed  CAS  Google Scholar 

  24. N.L. Leung, J.D. Vickers, R.L. Kinlough-Rathbone, H.-J. Reimers, and J.F. Mustard, ADP-induced changes in [32P]phosphate labeling of phosphatidylinositol-4,5-bisphosphate in washed rabbit platelets made refractory by prior ADP stimulation, Biochem. Biophys. Res. Commun. 113:483 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. C.J. Limas, Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated phospholipid-dependent protein kinase, Biochem. Biophys. Res. Commun. 96:1378 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. P.C.F. Mathias, A.R. Carpinelli, and W.J. Malaisse, Ionic response to cholinergic agents in pancreatic islets (abstract), Diabetologia 27:308A (1984).

    Google Scholar 

  27. W. Montague, N.G. Morgan, G.M. Rumford, and C.A. Prince, Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans, Biochem. J. 227:483 (1985).

    CAS  Google Scholar 

  28. N.G. Morgan, G.M. Rumford, and W. Montague, Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans, Biochem. J. 228:713 (1985).

    CAS  Google Scholar 

  29. M. Nenquin, P. Awouters, F. Mathot, and J.C. Henquin, Distinct effects of acetylcholine and glucose on calcium and rubidium efflux from mouse pancreatic islets, FEBS Lett. 176:457 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. M. Prentki and C.B. Wollheim, Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles, Experientia 40:1052 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. M. Prentki, T.J. Biden, ü. Janjic, R.F. Irvine, M.J. Berridge, and C.B. Wollheim, Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate, Nature 309:562 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. M. Prentki, B.E. Corkey and F.M. Matschinsky, Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line, J. Biol. Chem. 260:9185 (1985).

    PubMed  CAS  Google Scholar 

  33. R.S. Rana, R.J. Mertz, A. Kowluru, J.F. Dixon, L.E. Hokin, and M.J. MacDonald, Evidence for glucose-responsive and unresponsive pools of phospholipids in pancreatic islets, J. Biol. Chem. 260:7861 (1985).

    PubMed  CAS  Google Scholar 

  34. P. Rorsman, P.-O. Berggren, E. Gylfe, and B. Hellman, Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose, Biosci, Rep. 3:939 (1983).

    Article  CAS  Google Scholar 

  35. C.B. Wollheim and G.W.G. Sharp, Regulation of insulin release by calcium, Physiol. Rev. 61:914 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hellman, B., Gylfe, E., Bergsten, P. (1986). Mobilization of Different Pools of Glucose-Incorporated Calcium in Pancreatic β-Cells after Muscarinic Receptor Activation. In: Atwater, I., Rojas, E., Soria, B. (eds) Biophysics of the Pancreatic β-Cell. Advances in Experimental Medicine and Biology, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5314-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5314-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5316-4

  • Online ISBN: 978-1-4684-5314-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics