Skip to main content

Maxwell’s Demons in Channelled Metabolism: Paradoxes and their Resolution

  • Conference paper
The Organization of Cell Metabolism

Part of the book series: NATO ASI Series ((NSSA,volume 127))

Abstract

The second law of thermodynamics demands, among other things, that in an isolated system heat does not flow from a compartment at low to a compartment at high temperature. Maxwell (1871) pointed out that a “being” that could deal with individual molecules, when positioned at a trap door between two compartments at different temperatures, might open the door whenever a molecule with much higher than average kinetic energy would approach from the cold compartment, and whenever a kinetically “cold” molecule would approach from the “hot” compartment (see also Brush, 1976). Consequently, such a “Maxwell’s demon” would cause heat to flow from the cold to the hot compartment and violate the second law. For quite some time, the validity of the second law of thermodynamics seemed to depend on the absence of Maxwellian demons from the systems under consideration. Also, it was deemed plausible that the special property long sought for living systems, was nothing but the presence of Maxwellian demons within than. Whilst Maxwell already argued that beings, other than supernatural, would lack the knowledge about the positions and velocities of the molecules, Szilard (1929), Demers (1945) and Brillouin (1956) have since resolved this paradox: the demon would require a continuous influx of information, which should be counted as a kind of work-input and would violate the required isolation of the system. In fact, the collection of this information would always cost more than could be obtained by having the displaced heat drive an engine. Thus, the second law of thermodynamics does apply to all physical chemical systems, living and inanimate alike. Whenever an apparent (or, even, potentially real) violation of the second law of thermodynamics arises, one may indicate this by invoking a Maxwellian demon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C., 1977, Annu. Rev. Biochem., 46:955.

    Article  PubMed  CAS  Google Scholar 

  • Brillouin, L., 1956, “Science and Information Theory”, Academic Press, New York.

    Google Scholar 

  • Brush, S.G., 1976, “The Kind of Motion We Call Heat”, North-Holland, Amsterdam.

    Google Scholar 

  • Davis, R.H., 1967, in: “Organizational Biosynthesis”, H J. Vogel, J.Q. Lampen, and V. Bryson, eds., Academic Press, New York.

    Google Scholar 

  • Demers, P., 1945, Can. J. Research., 23:47.

    Article  Google Scholar 

  • Ferguson, S.J., 1985, Biochim. Biophys. Acta 866:47.

    Google Scholar 

  • Friedrich, P., 1985, in: “Organized Multienzyme Systems”, G.R. Welch, ed., Academic Press, New York.

    Google Scholar 

  • Guffanti, A.A., Fuchs, R.T., and Krulwich, T.A., 1983, J. Biol. Chem., 258:35.

    PubMed  CAS  Google Scholar 

  • Hill, T.L., 1960, “Statistical Thermodynamics”, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Hill, T.L. and Chen, Y., 1985, Proc, Natl, Acad. Sci. USA, 82:3654.

    Article  CAS  Google Scholar 

  • Kell, D.B. and Westerhoff, H.V., 1985, In: “Organized Multienzyme Systems”, G. R. Welch, ed., Academic Press, New York.

    Google Scholar 

  • Maxwell, J.C., 1871, “Theory of Heat”, Longmans Green, London.

    Google Scholar 

  • McQuarrie, D.A., 1967, Suppl. Rev. Series Appl. Probability, 8:1.

    Google Scholar 

  • Mitchell, P., 1961, Nature, 191:144.

    Article  PubMed  CAS  Google Scholar 

  • Nicolis, G. and Prigogine, I., 1977, “Self-Organization in Nonequilibrium Systems”, Wiley, New York.

    Google Scholar 

  • Rosing, J. and Slater, E.C., 1972, Biochim. Biophys. Acta, 267:275.

    Article  PubMed  CAS  Google Scholar 

  • Serpersu, E.H. and Tsong, T.Y., 1984, J. Biol. Chem., 259:7155.

    PubMed  CAS  Google Scholar 

  • Slater, E.C., Berden, J.A., and Herweijer, M.A., 1985, Biochim. Biophys. Acta, 811:217.

    PubMed  CAS  Google Scholar 

  • Smeach, S.C. and Gold, H.J., 1975a, J. Theor. Biol., 51:79.

    Article  PubMed  CAS  Google Scholar 

  • Smeach, S.C. and Gold, H.J., 1975b, J. Theor. Biol., 51:59.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D.K. and Bernhard, S.A., 1986, Curr. Top. Cell. Regul., in the press.

    Google Scholar 

  • Szilard, L., 1929, Z. Physik, 53:840.

    Article  CAS  Google Scholar 

  • Tsong, T.Y. and Astumian, R.D., 1985, in: “Proc. 8th Intl. Symp. Bioelectrochem. Bioenerg.”, in the press.

    Google Scholar 

  • Van Kampen, N.G., 1976, Adv. Chem. Phys., 4:245.

    Google Scholar 

  • Welch, G.R., 1977, Prog. Biophys. Molec. Biol., 32:103.

    Article  CAS  Google Scholar 

  • Welch, G.R. and Berry, M.N., 1985, in: “Organized Multienzyme Systems”, G.R. Welch, ed., Academic Press, New York.

    Google Scholar 

  • Westerhoff, H.V. and Chen, Y., 1985, Proc. Natl. Acad. Sci. USA, 82:3267.

    Article  Google Scholar 

  • Westerhoff, H.V. and Kell, D.B., 1986, Comm. Molec. Cellul. Biophys., in the press.

    Google Scholar 

  • Westerhoff, H.V. and Van Dam, K., 1986, “Mosaic Non-Equilibrium Thermodynamics and the Control of Biological Free-Energy Transduction”, Elsevier, Amsterdam.

    Google Scholar 

  • Westerhoff, H.V., Colen, A.-M. and Van Dam, K., 1983, Biochem. Soc. Trans., 11:81.

    PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., Melandri, B.A., Venturoli, G., Azzone, G.F., and Kell, D.B., 1984a, Biochem. Biophys Acta, 768:257.

    PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., Melandri, B.A., Venturoli, G., Azzone, G.F. and Kell, D.B., 1984b, FEBS Lett., 165:1.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H.V., Tsong, T.Y., Chock, P.B., Chen, Y., and Astumian, R.D., 1986, Proc. Natl. Acad. Sci., in the press.

    Google Scholar 

  • Woelders, H., Van der Zande, W.J., Colen, A.-M.A.F., Wanders, R.J.A., and Van Dam, K., 1985, FEBS Lett., 179:278.

    Article  PubMed  CAS  Google Scholar 

  • Wombacher, H., 1983, Molec. Cellul. Biochem., 56:155.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this paper

Cite this paper

Westerhoff, H.V., Kamp, F. (1986). Maxwell’s Demons in Channelled Metabolism: Paradoxes and their Resolution. In: Welch, G.R., Clegg, J.S. (eds) The Organization of Cell Metabolism. NATO ASI Series, vol 127. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5311-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5311-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5313-3

  • Online ISBN: 978-1-4684-5311-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics