Skip to main content

The Role of Axoplasmic Transport in the Restoration of Synaptic Transmission and in the Process of Sprouting During Nerve Regeneration

  • Chapter
Amyotrophic Lateral Sclerosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 209))

  • 229 Accesses

Abstract

After lesion of a peripheral nerve there is a complex of histometabolic reactions that occurs in the cell body and dendritic tree. Some changes are even observable at the light microscopic level and were termed chromatolysis. In summary, the reaction is characterized by dissolution of the basophilic granules, rounding of the perikaryon, enlargement of the nucleolus, and dispersal of the Nissl substance. The latter corresponds to the disaggregation of cytoplasmic ribosomal clusters and deagranulation of the rough endoplasmic reticulum. This process is inhibited if actinomycin D is injected at the time of the axonal damage or within 9 hours, suggesting the involvement of RNA synthesis as a trigger for chromatolytic reaction[l]. It is a fact that regenerating neurons produce more proteins, even at faster rates, as shown by many laboratories (see other chapters in ref.[l]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. Kreutzberg, The regeneration program of the neuron: an introduction, in: “Post-Traumatic Nerve Regeneration”, A. Gorio, H. Millesi, and S. Mingrino, eds., pp. 3–6, Raven Press, New York (1981).

    Google Scholar 

  2. K. Blizinger and G. W. Kreutzberg, Displacement of synaptic terminals from regenerating motor neurons by microglial cells, Z.Zellforsh., 85: 145–157 (1968).

    Article  Google Scholar 

  3. J. Axelsson and S. Thesleff, A study of supersensitivity in denervated mammalian skeletal muscle, J.Physiol., 147: 178–193 (1959).

    PubMed  CAS  Google Scholar 

  4. R. Miledi, The acetylcholine sensitivity of frog muscle fibers after complete or partial denervation, J.Physiol., 151: 1–23 (1960).

    PubMed  CAS  Google Scholar 

  5. D. M. Fambrough, Acetylcholine sensitivity of muscle fiber membranes: mechanism of regulation by motor neurons, Science (New York), 168: 372–373 (1970).

    Article  CAS  Google Scholar 

  6. A. Gorio, Muscle innervation and reinnervation as a model for development and specificty of neuronal connections, in: “Multi- Disciplinary Approach to Brain Development”, C. Di Benedetta, R. Balazs, G. Gombos, and G. Porcellati, eds., pp. 439–452, Elsevier/ North Holland Biomedical Press, Amsterdam (1980).

    Google Scholar 

  7. A. Gorio, G. Carmignoto, and G. Ferrari, Axonal sprouting stimulated by gangliosides. A new model for elongation and sprouting, in: “Gangliosides in Neurological and Neuromuscular Function Development and Repair”, A. Gorio and M. Rapport, eds., pp. 177–195, Raven Press, New York (1981).

    Google Scholar 

  8. R. F. Mark, Synaptic repression at neuromuscular junctions, Physiol. Reviews, 60: 355–395 (1980).

    CAS  Google Scholar 

  9. R. W. Sperry, Myotypic specificity in teleost motor neurons, J.Comp. Neurol., 93: 277–287 (1950).

    Article  PubMed  CAS  Google Scholar 

  10. R. W. Sperry, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc.Natl.Acad.Sci.(USA), 50: 703–710 (1963).

    Article  CAS  Google Scholar 

  11. J. R. Sanes, L. M. Marshall, and U. J. McMahan, Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites, J.Cell Biol., 78: 176–198 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. A. Gorio and G. Carmignoto, Reformation, maturation and stabilization of neuromuscular junctions in peripheral nerve regeneration. The possible role of exogenous gangliosides on determining motor neuron sprouting, in: “Post-Traumatic Peripheral Nerve Regeneration”, A. Gorio, H. Millesi and S. Mingrino, eds., pp. 481–493, Raven Press, New York (1981).

    Google Scholar 

  13. A. Gorio, G. Carmignoto, L. Facci, and M. Finesso, Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth, Brain Research, 197: 236–241 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. G. Carmignoto, M. Finesso, L. Tredese, and A. Gorio, Transmitter release mechanisms during the early stages of reinnervation of a fast twitch muscle of the rat. Effects of ganglioside treatments, in: “Membranes and the Environment, Responses of Membranes to External Agents”, K. Block, L. Bolis, and T. Tosteson, eds., pp. 297–312, Raven Press, New York (1981).

    Google Scholar 

  15. A. Gorio, Receptors innervation, and neurotransmitter release: micro-physiology of chemical synapses, in: “Advances in Biochemical Psychopharmacology”, G. Pepeu, M. J. Kuhar, and S. J. Enna, eds., pp. 57–65, Raven Press, New York (1980).

    Google Scholar 

  16. A. Gorio, W. P. Hurlbut, and B. Ceccarelli, Acetylcholine compartments in mouse diaphragm: comparison of the effects of black widow spider venom, electrical stimulation and high concentration of potassium, J.Cell Biol., 78: 716–733 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. B. Katz and R. Miledi, Transmitter leakage from motor nerve endings, Proc.R.Soc.Lond.B.Biol.Sci., 196: 59–72 (1975).

    Article  Google Scholar 

  18. J. D. Cook, K. Okamoto, and D. M. J. Quastel, The role of calcium in depolarization secretion coupling at the motor nerve terminal, J.Physiol., 228: 459–497 (1973).

    Google Scholar 

  19. A. Gorio and A. Mauro, Reversibility and mode of action of black widow spider venom on the vertebrate neuromuscular junction, J.General Physiol., 73: 245–263 (1979).

    Article  CAS  Google Scholar 

  20. P. N. Hoffman and R. J. Lasek, Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change, Brain Res.,, 202: 317–333 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. R. J. Lasek, I. G. McQuarrie and J. R. Wujek, The central nervous system regeneration problem: neuron and environment, in: “Post- Traumatic Nerve Regeneration”, A. Gorio, H. Millesi, and S. Mingrino, eds., pp. 59–74, Raven Press, New York (1981).

    Google Scholar 

  22. T. Lomo and C. R. Slater, Control of junctional acetylcholinesterase by neural and muscular influences in the rat, J.Physiol., 303: 191–202 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gorio, A. (1987). The Role of Axoplasmic Transport in the Restoration of Synaptic Transmission and in the Process of Sprouting During Nerve Regeneration. In: Cosi, V., Kato, A.C., Parlette, W., Pinelli, P., Poloni, M. (eds) Amyotrophic Lateral Sclerosis. Advances in Experimental Medicine and Biology, vol 209. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5302-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5302-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5304-1

  • Online ISBN: 978-1-4684-5302-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics