Skip to main content

Proteases, Their Inhibitors and the Extracellular Matrix: Factors in Nerve-Muscle Development and Maintenance

  • Chapter
Amyotrophic Lateral Sclerosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 209))

  • 228 Accesses

Abstract

Over the last decade, the basement membrane or basal lamina of the adult skeletal muscle fiber has been emphasized as playing an important, if not critical, role in muscle regeneration after injury[1-9]. A concept of considerable stability and persistence of this structure or several components of it, has developed from studies principally in the frog that suggest it has major roles in the reinnervation of denervated adult muscle over and above any potential contributions by the principal cellular elements: nerve axon, Schwann cell or muscle fiber itself, in this process[10, 11]. In the last few years other studies suggest that one or more macro- molecules within the synaptic region of the basement membrane influence or cause the accumulation of acetylcholine receptors (AChRs) in the absence of the nerve[12,13]. Using much the same experimental paradigm, these same authors conclude that the same or different molecules, ‘stably’ attached to the synaptic basal lamina, regulate or ‘direct’ the accumulation of acetylcholinesterase (AChE), again at original synaptic sites[14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Allbrook, Skeletal muscle regeneration, Muscle & Nerve, 4: 234–245 (1981).

    Article  CAS  Google Scholar 

  2. R. Vracko and E. P. Benditt, Basal lamina: the scaffold for orderly cell replacement, observations on regeneration of injured skeletal muscle fiber and capillaries, J. Cell Biol., 55: 406–419 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. A. K. Gulati, A. H. Reddi, and A. A. Zalewski, Changes in the extra cellular matrix components laminin and fibronectin during immune rejection of skeletal muscle, Anatomical Record, 204: 175–183 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. A. K. Gulati, A. H. Reddi, and A. A. Zalewski, Changes in the basement components during skeletal muscle fiber degeneration and regeneration, J. Cell Biol., 97: 957–962 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. A. K. Gulati, A. A. Zalewski, and A. H. Reddi, An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration, Dev.Biol., 96: 355–365 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. A. K. Gulati, Basement membranes component changes in skeletal, muscle transplants undergoing regeneration or rejection, J. Cell. Biochem., 27: 337–346 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. J. R. Sanes and J. C. Lawrence, Jr., Activity dependent accumulation of basal lamina by cultured rat myotubes, Dev. Biol., 97: 123–136 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. J. R. Sanes, Roles of extracellular matrix in neuronal development, Ann. Rev. Physiol., 45: 581–600 (1983).

    Article  CAS  Google Scholar 

  9. L. Anglister and U. J. McMahan, Extracellular matrix components involved in neuromuscular transmission and regeneration, Ciba Foundation Symposium, 108: 163–178 (1984).

    PubMed  CAS  Google Scholar 

  10. M. S. Letinsky, K. H. Fischbeck, and U. J. McMahan, Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush, J. Neurocytol., 5: 691–718 (1976).

    Article  PubMed  CAS  Google Scholar 

  11. J. R. Sanes, L. M. Marshall, and U. J. McMahan, Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons of original synaptic sites, J. Cell Biol., 78: 176–198 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. S. Burden, P. Sargent, and U. J. McMahan, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve, J.Cell Biol., 82: 412–425 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. R. M. Nitkin, B. G. Wallace, M. E. Spira, et al., Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions, Cold Spring Harbor Symp., 48: 653–665 (1983).

    Article  CAS  Google Scholar 

  14. L. Anglister and U. J. McMahan, Basal lamina directs acetylcholine esterase accumulation at synaptic sites in regenerating muscle, J. Cell Biol., 101: 735–743 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. D. C. Van Essen, Neuromuscular synapse elimination, in: “Neuronal Development”, N. C. Spitzer, ed., pp. 333–376, Plenum Press, New York (1982).

    Google Scholar 

  16. D. Purves and J. W. Lichtman, Elimination of synapses in the developing nervous system, Science, 210: 153–157 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. D. Purves and J. W. Lichtman, “Principles of Neural Development”, Sinauer, Sunderland, Massachusetts (1984).

    Google Scholar 

  18. D. Wigston and J. Sanes, Selective reinnervation of adult mammalian muscle by axons from different segmental levels, Nature, 299: 464–467 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. J. L. Bixby and D. C. Van Essen, Competition between foreign and original nerves in adult mammalian skeletal muscle, Nature (London), 282: 276–278 (1979).

    Article  Google Scholar 

  20. B. W. Festoff, Role of neuromuscular junction macromolecules in the pathogenesis of amyotrophic lateral sclerosis, Med. Hypotheses, 6: 121–131 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. E. D. Hay, ed., “Cell Biology of the Extracellular Matrix”, Plenum Press, New York (1982).

    Google Scholar 

  22. R. Timpl, Molecular aspects of basement membrane structure, Prog. Clin.Biol.Res., 171: 63–74 (1985).

    PubMed  CAS  Google Scholar 

  23. N. A. Kefalides, R. Alper, and C. C. Clark, Biochemistry and metabolism of basement membranes, Int.Rev.Cytol., 61: 167–228 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. R. Timpl and G. R. Martin, in: “Immunochemistry of the Extracellular Matrix”, Vol.2, H. Furthmayer, ed., CRC Press, Boca Raton (1982).

    Google Scholar 

  25. H. L. Fernandez, M. J. Duell, and B. W. Festoff, Cellular distribution of 16S acetylcholinesterase, J.Neurochem., 32: 581–585 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. H. L. Fernandez, M. J. Duell, and B. W. Festoff, Neurotrophic regulation of 16S acetylcholinesterase at the vertebrate neuromuscular junction, J.Neurobiol., 10: 442–454 (1979).

    Article  Google Scholar 

  27. H. L. Fernandez, M. J. Duell, and B. W. Festoff, Bi-directional axonal transport of 16S acetylcholinesterase in rat sciatic nerve, J.Neurobiol., 10: 31–39 (1980).

    Article  Google Scholar 

  28. B. W. Festoff, Release of acetylcholinesterase in amyotrophic lateral sclerosis, in: “Pathogenesis of Human Motor Neuron Diseases”, L. P. Rowland, ed., pp. 503 - 516, Raven Press, New York (1982).

    Google Scholar 

  29. J. Massouli£, The polymorphism of cholinesterase and its physiological significance, Trends Biochem.Sci., 5: 160–164 (1980).

    Article  Google Scholar 

  30. S. Bon, J. Cartaud, and J. Massouli£, The dependence of acetylcholine esterase aggregation at low ionic strength upon a polyanionic component, Eur.J.Biochem., 85: 1–14 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. J. Sketelj, and M. Brzin, Attachment of acetylcholinesterase to structures of the motor endplate, Histochem., 61: 239–248 (1979).

    Article  CAS  Google Scholar 

  32. J. Grassi, J. Massouli£, and R. Timpl, Relationship of collagen-tailed acetylcholinesterase with basal lamina components absence of binding with laminin, fibronectin and collagen types IV and V and lack of reactivity with different anti-collagen sear, Eur.J. Biochem., 133: 31–38 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. M. Vigny, G. R. Martin, and G. R. Grotendorst, Interactions of asymmetric forms of acetylcholinesterase with basement membrane components, J.Biol.Chem., 258: 8794–8798 (1983).

    PubMed  CAS  Google Scholar 

  34. E. Brandan and N. C. Inestrosa, Binding of the asymmetric forms of acetylcholinesterase to heparin, Biochem.J., 221: 415–422 (1984).

    PubMed  CAS  Google Scholar 

  35. E. Brandan, M. Moldonado, J. Garrido, and N. C. Inestrosa, Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparin sulfate proteoglycan, J.Cell Biol., 101: 985–992 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. H. L. Fernandez and M. J. Duell, Protease inhibitors reduce effects of denervation on muscle endplate acetylcholinesterase, J. Neurochem. (1980).

    Google Scholar 

  37. H. L. Fernandez, M. R. Patterson, and M. J. Duell, Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture, J.Neurobiol., 11: 557–570 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. B. W. Festoff, Protocol for a model therapeutic trial in amyotrophic lateral sclerosis, in: “Research Progress in Motor Neurone Disease”, F. C. Rose, ed., pp. 432–442, Pitman, London (1984).

    Google Scholar 

  39. B. W. Festoff, K. L. Oliver, and N. B. Reddy, In vitro studies of muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle, J.Membr.Biol., 32:345–360 (1977).

    Google Scholar 

  40. D. Hantai and B. W. Festoff, Muscle adhesive basement membrane proteins are degraded by plasminogen activator in the presence of plasminogen, in: “Molecular Neurobiology”, E. Kandel and R. Levi- Montalcini, eds., Springer-Verlag, Berlin (1986) (in press).

    Google Scholar 

  41. B. W. Festoff, M. R. Patterson, and K. Romstedt, Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells, J.Cell.Physiol., 110: 190–195 (1982).

    Article  PubMed  CAS  Google Scholar 

  42. B. W. Festoff, M. R. Patterson, D. Eaton, and J. B. Baker, Plasminogen activator and protease nexin in myogenesis, J.Cell.Biol., 91: 43a (1981).

    Google Scholar 

  43. M. Ramby, B. Norman, and P. Wallen, A sensitive assay for tissue plasminogen activator, Thromb.Res., 27: 743–748 (1982).

    Article  Google Scholar 

  44. A. Granelli-Piperno and E. Reich, A study of protease and protease inhibitor complexes in biological fluids, J. Exp. Med., 148: 223–234 (1983).

    Article  Google Scholar 

  45. A. Smokovitis and T. Astrup, Localization of fibrinolytic activity and inhibition of plasmin in the spinal cord of rat, guinea pig and rabbit, J. Neurosurg., 48: 1008–1014 (1978).

    Article  PubMed  CAS  Google Scholar 

  46. K. Danø, P. A. Andreasen, J. Grøndahl-Hansen, P. Kristensen, L. S. Nielsen, and L. Skriver, Plasminogen activators, tissue degradation and cancer, Adv.Cancer Res., 40: 139–266 (1985).

    Article  Google Scholar 

  47. D. L. Eaton and J. B. Baker, Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor, J.Cell Physiol., 117: 175–182 (1983).

    Article  PubMed  CAS  Google Scholar 

  48. J. B. Baker, D. A. Low, R. L. Simmer, and D. D. Cunningham, Protease nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell, 21: 37–45 (1980).

    Article  PubMed  CAS  Google Scholar 

  49. J. B. Baker, D. A. Low, D. L. Eaton, and D. D. Cunningham, Thrombin mediated mitogenesis: the role of secreted protease nexin, J.Cell. Physiol., 112: 291–297 (1982).

    Article  PubMed  CAS  Google Scholar 

  50. B. Wiman, G. Mellbring, and M. Ranby, Plasminogen activator release during venous stasis and exercise as determined by a new specific assay, Clin.Chem.Acta, 127: 279–288 (1983).

    Article  CAS  Google Scholar 

  51. B. W. Festoff and H. L. Fernandez, Plasma and red cell acetylcholine esterase in amyotrophic lateral sclerosis, Muscle and Nerve, 4: 41–47 (1981).

    Article  PubMed  CAS  Google Scholar 

  52. D. C. Rijken and D. Collen, Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture, J.Biol.Chem., 256: 7035–7041 (1981).

    PubMed  CAS  Google Scholar 

  53. H. M. Fullmer, H. D. Seidler, R. S. Krooth, and L. T. Kurland, A cutaneous disorder of connective tissue in amyotrophic lateral sclerosis, Neurology (Minneap.), 10: 717–721 (1960).

    Article  CAS  Google Scholar 

  54. H. M. Fullmer, W. A. Gibson, G. Lazarus, A. C. Stam, Jr., and C. Link, Collagenolytic activity of the skin associated with neuromuscular diseases including amyotrophic lateral sclerosis, Lancet, 1: 1007–1009 (1966).

    Article  PubMed  CAS  Google Scholar 

  55. L. Beach, E. T. Reyes, B. W. Festoff, R. Yanagihara, D. C. Gajdusek, and J. S. Rao, Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis, J.Neurol.Sci. 72: 49–60 (1986).

    Article  PubMed  CAS  Google Scholar 

  56. Z. Werb and J. Aggeler, Proteases induce secretion of collagenase and plasminogen activator by fibroblasts, Proc.Natl.Acad.Sci., USA., 75: 1839–1843 (1978).

    Article  PubMed  CAS  Google Scholar 

  57. M. Senior and E. J. Campbell, Neutral proteinases from human inflammatory cells, Clin.Lab.Med., 3: 645–666 (1983).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Festoff, B.W. (1987). Proteases, Their Inhibitors and the Extracellular Matrix: Factors in Nerve-Muscle Development and Maintenance. In: Cosi, V., Kato, A.C., Parlette, W., Pinelli, P., Poloni, M. (eds) Amyotrophic Lateral Sclerosis. Advances in Experimental Medicine and Biology, vol 209. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5302-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5302-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5304-1

  • Online ISBN: 978-1-4684-5302-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics